public class RDA extends QDA
LDA
,
QDA
,
Serialized FormConstructor and Description |
---|
RDA(double[] priori,
double[][] mu,
double[][] eigen,
smile.math.matrix.DenseMatrix[] scaling)
Constructor.
|
RDA(double[] priori,
double[][] mu,
double[][] eigen,
smile.math.matrix.DenseMatrix[] scaling,
smile.util.IntSet labels)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
static RDA |
fit(double[][] x,
int[] y,
double alpha)
Learn regularized discriminant analysis.
|
static RDA |
fit(double[][] x,
int[] y,
double alpha,
double[] priori,
double tol)
Learn regularized discriminant analysis.
|
static RDA |
fit(double[][] x,
int[] y,
java.util.Properties prop)
Learns regularized discriminant analysis.
|
static RDA |
fit(smile.data.formula.Formula formula,
smile.data.DataFrame data)
Learns regularized discriminant analysis.
|
static RDA |
fit(smile.data.formula.Formula formula,
smile.data.DataFrame data,
java.util.Properties prop)
Learns regularized discriminant analysis.
|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
applyAsDouble, applyAsInt, f, predict
public RDA(double[] priori, double[][] mu, double[][] eigen, smile.math.matrix.DenseMatrix[] scaling)
priori
- a priori probabilities of each class.mu
- the mean vectors of each class.eigen
- the eigen values of each variance matrix.scaling
- the eigen vectors of each covariance matrix.public RDA(double[] priori, double[][] mu, double[][] eigen, smile.math.matrix.DenseMatrix[] scaling, smile.util.IntSet labels)
priori
- a priori probabilities of each class.mu
- the mean vectors of each class.eigen
- the eigen values of each variance matrix.scaling
- the eigen vectors of each covariance matrix.labels
- class labelspublic static RDA fit(smile.data.formula.Formula formula, smile.data.DataFrame data)
formula
- a symbolic description of the model to be fitted.data
- the data frame of the explanatory and response variables.public static RDA fit(smile.data.formula.Formula formula, smile.data.DataFrame data, java.util.Properties prop)
formula
- a symbolic description of the model to be fitted.data
- the data frame of the explanatory and response variables.public static RDA fit(double[][] x, int[] y, java.util.Properties prop)
x
- training samples.y
- training labels.public static RDA fit(double[][] x, int[] y, double alpha)
x
- training samples.y
- training labels in [0, k), where k is the number of classes.alpha
- regularization factor in [0, 1] allows a continuum of models
between LDA and QDA.public static RDA fit(double[][] x, int[] y, double alpha, double[] priori, double tol)
x
- training samples.y
- training labels in [0, k), where k is the number of classes.alpha
- regularization factor in [0, 1] allows a continuum of models
between LDA and QDA.priori
- the priori probability of each class. If null, it will be
estimated from the training data.tol
- a tolerance to decide if a covariance matrix is singular; it
will reject variables whose variance is less than tol2.