T - the type of centroids.U - the tpe of observations. Usually, T and U are the same.
But in case of SIB, they are different.public abstract class CentroidClustering<T,U> extends PartitionClustering implements java.lang.Comparable<CentroidClustering<T,U>>
| Modifier and Type | Field and Description |
|---|---|
T[] |
centroids
The centroids of each cluster.
|
java.util.function.ToDoubleBiFunction<T,U> |
distance
The lambda of distance measure.
|
double |
distortion
The total distortion.
|
k, OUTLIER, size, y| Constructor and Description |
|---|
CentroidClustering(double distortion,
T[] centroids,
int[] y,
java.util.function.ToDoubleBiFunction<T,U> distance)
Constructor.
|
| Modifier and Type | Method and Description |
|---|---|
int |
compareTo(CentroidClustering<T,U> o) |
int |
predict(U x)
Classifies a new observation.
|
java.lang.String |
toString() |
run, seedpublic final double distortion
public final T[] centroids
public CentroidClustering(double distortion,
T[] centroids,
int[] y,
java.util.function.ToDoubleBiFunction<T,U> distance)
distortion - the total distortion.centroids - the centroids of each cluster.y - the cluster labels.distance - the lambda of distance measure.public int compareTo(CentroidClustering<T,U> o)
compareTo in interface java.lang.Comparable<CentroidClustering<T,U>>public int predict(U x)
x - a new observation.public java.lang.String toString()
toString in class PartitionClustering