public class MLP extends MultilayerPerceptron implements OnlineRegression<double[]>
| Constructor and Description |
|---|
MLP(int p,
LayerBuilder... builders)
Constructor.
|
| Modifier and Type | Method and Description |
|---|---|
double |
predict(double[] x)
Predicts the dependent variable of an instance.
|
void |
update(double[][] x,
double[] y)
Updates the model with a (micro-)batch of new samples.
|
void |
update(double[] x,
double y)
Online update the regression model with a new training instance.
|
backpropagate, getLearningRate, getMomentum, getWeightDecay, propagate, setLearningRate, setMomentum, setWeightDecay, toString, updateclone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitapplyAsDouble, predictpublic MLP(int p,
LayerBuilder... builders)
p - the number of variables in input layer.builders - the builders of hidden layers from bottom to top.public double predict(double[] x)
Regressionpredict in interface Regression<double[]>x - an instance.public void update(double[] x,
double y)
OnlineRegressionupdate in interface OnlineRegression<double[]>x - training instance.y - response variable.public void update(double[][] x,
double[] y)
OnlineRegressionupdate in interface OnlineRegression<double[]>x - the training instances.y - the target values.