public class Bootstrap
extends java.lang.Object
Modifier and Type | Field and Description |
---|---|
int |
k
The number of rounds of cross validation.
|
int[][] |
test
The index of testing instances.
|
int[][] |
train
The index of training instances.
|
Constructor and Description |
---|
Bootstrap(int n,
int k)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
double[] |
classification(smile.data.formula.Formula formula,
smile.data.DataFrame data,
java.util.function.BiFunction<smile.data.formula.Formula,smile.data.DataFrame,DataFrameClassifier> trainer)
Runs cross validation tests.
|
static double[] |
classification(int k,
smile.data.formula.Formula formula,
smile.data.DataFrame data,
java.util.function.BiFunction<smile.data.formula.Formula,smile.data.DataFrame,DataFrameClassifier> trainer)
Runs cross validation tests.
|
static <T> double[] |
classification(int k,
T[] x,
int[] y,
java.util.function.BiFunction<T[],int[],Classifier<T>> trainer)
Runs cross validation tests.
|
<T> double[] |
classification(T[] x,
int[] y,
java.util.function.BiFunction<T[],int[],Classifier<T>> trainer)
Runs cross validation tests.
|
double[] |
regression(smile.data.formula.Formula formula,
smile.data.DataFrame data,
java.util.function.BiFunction<smile.data.formula.Formula,smile.data.DataFrame,DataFrameRegression> trainer)
Runs bootstrap tests.
|
static double[] |
regression(int k,
smile.data.formula.Formula formula,
smile.data.DataFrame data,
java.util.function.BiFunction<smile.data.formula.Formula,smile.data.DataFrame,DataFrameRegression> trainer)
Runs bootstrap tests.
|
static <T> double[] |
regression(int k,
T[] x,
double[] y,
java.util.function.BiFunction<T[],double[],Regression<T>> trainer)
Runs bootstrap tests.
|
<T> double[] |
regression(T[] x,
double[] y,
java.util.function.BiFunction<T[],double[],Regression<T>> trainer)
Runs bootstrap tests.
|
public final int k
public final int[][] train
public final int[][] test
public Bootstrap(int n, int k)
n
- the number of samples.k
- the number of rounds of bootstrap.public <T> double[] classification(T[] x, int[] y, java.util.function.BiFunction<T[],int[],Classifier<T>> trainer)
public double[] classification(smile.data.formula.Formula formula, smile.data.DataFrame data, java.util.function.BiFunction<smile.data.formula.Formula,smile.data.DataFrame,DataFrameClassifier> trainer)
public <T> double[] regression(T[] x, double[] y, java.util.function.BiFunction<T[],double[],Regression<T>> trainer)
public double[] regression(smile.data.formula.Formula formula, smile.data.DataFrame data, java.util.function.BiFunction<smile.data.formula.Formula,smile.data.DataFrame,DataFrameRegression> trainer)
public static <T> double[] classification(int k, T[] x, int[] y, java.util.function.BiFunction<T[],int[],Classifier<T>> trainer)
public static double[] classification(int k, smile.data.formula.Formula formula, smile.data.DataFrame data, java.util.function.BiFunction<smile.data.formula.Formula,smile.data.DataFrame,DataFrameClassifier> trainer)
public static <T> double[] regression(int k, T[] x, double[] y, java.util.function.BiFunction<T[],double[],Regression<T>> trainer)
public static double[] regression(int k, smile.data.formula.Formula formula, smile.data.DataFrame data, java.util.function.BiFunction<smile.data.formula.Formula,smile.data.DataFrame,DataFrameRegression> trainer)