public class GroupKFold
extends java.lang.Object
| Modifier and Type | Field and Description |
|---|---|
int |
k
The number of folds.
|
int[][] |
test
The index of testing instances.
|
int[][] |
train
The index of training instances.
|
| Constructor and Description |
|---|
GroupKFold(int n,
int k,
int[] groups)
Constructor.
|
| Modifier and Type | Method and Description |
|---|---|
int[] |
classification(smile.data.DataFrame data,
java.util.function.Function<smile.data.DataFrame,DataFrameClassifier> trainer)
Runs cross validation tests.
|
<T> int[] |
classification(T[] x,
int[] y,
java.util.function.BiFunction<T[],int[],Classifier<T>> trainer)
Runs cross validation tests.
|
double[] |
regression(smile.data.DataFrame data,
java.util.function.Function<smile.data.DataFrame,DataFrameRegression> trainer)
Runs cross validation tests.
|
<T> double[] |
regression(T[] x,
double[] y,
java.util.function.BiFunction<T[],double[],Regression<T>> trainer)
Runs cross validation tests.
|
public final int k
public final int[][] train
public final int[][] test
public GroupKFold(int n,
int k,
int[] groups)
n - the number of samples.k - the number of folds.groups - the group information of samples.public <T> int[] classification(T[] x,
int[] y,
java.util.function.BiFunction<T[],int[],Classifier<T>> trainer)
public int[] classification(smile.data.DataFrame data,
java.util.function.Function<smile.data.DataFrame,DataFrameClassifier> trainer)
public <T> double[] regression(T[] x,
double[] y,
java.util.function.BiFunction<T[],double[],Regression<T>> trainer)
public double[] regression(smile.data.DataFrame data,
java.util.function.Function<smile.data.DataFrame,DataFrameRegression> trainer)