public class Normalizer extends java.lang.Object implements FeatureTransform
Scaling inputs to unit norms is a common operation for text classification or clustering for instance.
| Modifier and Type | Class and Description |
|---|---|
static class |
Normalizer.Norm
The types of data scaling.
|
| Constructor and Description |
|---|
Normalizer()
Default constructor with L2 norm.
|
Normalizer(Normalizer.Norm norm)
Constructor.
|
| Modifier and Type | Method and Description |
|---|---|
java.lang.String |
toString() |
smile.data.DataFrame |
transform(smile.data.DataFrame data)
Transform a data frame.
|
double[] |
transform(double[] x)
Transform a feature vector.
|
smile.data.Tuple |
transform(smile.data.Tuple x)
Transform a feature vector.
|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waittransformpublic Normalizer()
public Normalizer(Normalizer.Norm norm)
norm - The norm to use to normalize each non zero sample.public double[] transform(double[] x)
FeatureTransformtransform in interface FeatureTransformx - a feature vector.public smile.data.Tuple transform(smile.data.Tuple x)
FeatureTransformtransform in interface FeatureTransformx - a feature vector.public smile.data.DataFrame transform(smile.data.DataFrame data)
FeatureTransformtransform in interface FeatureTransformdata - a data frame.public java.lang.String toString()
toString in class java.lang.Object