Skip navigation links
A B C D E F G H I J K L M N O P Q R S T U V W X Y 

A

Accuracy - Class in smile.validation
The accuracy is the proportion of true results (both true positives and true negatives) in the population.
Accuracy() - Constructor for class smile.validation.Accuracy
 
ActivationFunction - Interface in smile.base.mlp
The activation function in hidden layers.
AdaBoost - Class in smile.classification
AdaBoost (Adaptive Boosting) classifier with decision trees.
AdaBoost(Formula, int, DecisionTree[], double[], double[], double[]) - Constructor for class smile.classification.AdaBoost
Constructor.
AdaBoost(Formula, int, DecisionTree[], double[], double[], double[], IntSet) - Constructor for class smile.classification.AdaBoost
Constructor.
add(E[]) - Method in class smile.neighbor.BKTree
Add a dataset into BK-tree.
add(Collection<E>) - Method in class smile.neighbor.BKTree
Add a dataset into BK-tree.
add(E) - Method in class smile.neighbor.BKTree
Add a datum into the BK-tree.
add(int) - Method in class smile.neighbor.lsh.Bucket
Adds a point to bucket.
add(int, double[]) - Method in class smile.neighbor.lsh.Hash
Insert an item into the hash table.
add(int, double[]) - Method in class smile.neighbor.lsh.MultiProbeHash
 
addChild(String) - Method in class smile.taxonomy.Concept
Add a child to this node
addChild(Concept) - Method in class smile.taxonomy.Concept
Add a child to this node
addEdge(Neuron) - Method in class smile.vq.hebb.Neuron
Adds an edge.
addEdge(Neuron, int) - Method in class smile.vq.hebb.Neuron
Adds an edge.
addKeywords(String...) - Method in class smile.taxonomy.Concept
Add a list of synomym to the concept synset.
AdjustedMutualInformation - Class in smile.validation
Adjusted Mutual Information (AMI) for comparing clustering.
AdjustedMutualInformation(AdjustedMutualInformation.Method) - Constructor for class smile.validation.AdjustedMutualInformation
Constructor.
AdjustedMutualInformation.Method - Enum in smile.validation
The normalization method.
AdjustedRandIndex - Class in smile.validation
Adjusted Rand Index.
AdjustedRandIndex() - Constructor for class smile.validation.AdjustedRandIndex
 
adjustedRSquared() - Method in class smile.regression.LinearModel
Returns adjusted R2 statistic.
age - Variable in class smile.vq.hebb.Edge
The age of this edges.
age() - Method in class smile.vq.hebb.Neuron
Increments the age of all edges emanating from the neuron.
alpha - Variable in class smile.base.mlp.MultilayerPerceptron
momentum factor
antecedent - Variable in class smile.association.AssociationRule
Antecedent itemset.
apply(double, FPTree) - Static method in class smile.association.ARM
Mines the association rules.
apply(FPTree) - Static method in class smile.association.FPGrowth
Mines the frequent item sets.
apply(String[]) - Method in class smile.feature.Bag
Returns the bag-of-words features of a document.
apply(int, int, int, FitnessMeasure<BitString>) - Method in class smile.feature.GAFE
Genetic algorithm based feature selection for classification.
apply(Tuple) - Method in class smile.feature.SparseOneHotEncoder
Generates the compact representation of sparse binary features for given object.
apply(DataFrame) - Method in class smile.feature.SparseOneHotEncoder
Generates the compact representation of sparse binary features for a data frame.
apply(BitString, BitString) - Method in enum smile.gap.Crossover
Returns a pair of offsprings by crossovering parent chromosomes.
apply(T[]) - Method in interface smile.gap.Selection
Select a chromosome with replacement from the population based on their fitness.
applyAsDouble(T) - Method in interface smile.classification.Classifier
 
applyAsDouble(T) - Method in interface smile.regression.Regression
 
applyAsInt(T) - Method in interface smile.classification.Classifier
 
ARM - Class in smile.association
Association Rule Mining.
AssociationRule - Class in smile.association
Association rule object.
AssociationRule(int[], int[], double, double, double, double) - Constructor for class smile.association.AssociationRule
Constructor.
attractors - Variable in class smile.clustering.DENCLUE
The density attractor of each observation.
AUC - Class in smile.validation
The area under the curve (AUC).
AUC() - Constructor for class smile.validation.AUC
 
AverageImputation - Class in smile.imputation
Impute missing values with the average of other attributes in the instance.
AverageImputation() - Constructor for class smile.imputation.AverageImputation
Constructor.

B

B - Variable in class smile.vq.BIRCH
The branching factor of non-leaf nodes.
backpropagate(double[]) - Method in class smile.base.mlp.HiddenLayer
 
backpropagate(double[]) - Method in class smile.base.mlp.Layer
Propagates the errors back to a lower layer.
backpropagate(double[]) - Method in class smile.base.mlp.MultilayerPerceptron
Propagates the errors back through the network.
backpropagate(double[]) - Method in class smile.base.mlp.OutputLayer
 
Bag - Class in smile.feature
The bag-of-words feature of text used in natural language processing and information retrieval.
Bag(String[]) - Constructor for class smile.feature.Bag
Constructor.
Bag(String[], boolean) - Constructor for class smile.feature.Bag
Constructor.
Bagging - Class in smile.sampling
Bagging (Bootstrap aggregating) is a way to improve the classification by combining classifications of randomly generated training sets.
Bagging(int[]) - Constructor for class smile.sampling.Bagging
Constructor.
BBDTree - Class in smile.clustering
Balanced Box-Decomposition Tree.
BBDTree(double[][]) - Constructor for class smile.clustering.BBDTree
Constructs a tree out of the given n data data living in R^d.
BestLocalizedWavelet - Class in smile.wavelet
Best localized wavelets.
BestLocalizedWavelet(int) - Constructor for class smile.wavelet.BestLocalizedWavelet
Constructor.
bias - Variable in class smile.base.mlp.Layer
The bias.
binary(int, KernelMachine<int[]>) - Static method in class smile.base.svm.LinearKernelMachine
Creates a linear kernel machine.
BIRCH - Class in smile.vq
Balanced Iterative Reducing and Clustering using Hierarchies.
BIRCH(int, int, int, double) - Constructor for class smile.vq.BIRCH
Constructor.
bits() - Method in class smile.gap.BitString
Returns the bit string of chromosome.
BitString - Class in smile.gap
The standard bit string representation of the solution domain.
BitString(int, FitnessMeasure<BitString>) - Constructor for class smile.gap.BitString
Constructor.
BitString(int, FitnessMeasure<BitString>, Crossover, double, double) - Constructor for class smile.gap.BitString
Constructor.
BitString(byte[], FitnessMeasure<BitString>) - Constructor for class smile.gap.BitString
Constructor.
BitString(byte[], FitnessMeasure<BitString>, Crossover, double, double) - Constructor for class smile.gap.BitString
Constructor.
BKTree<E> - Class in smile.neighbor
A BK-tree is a metric tree specifically adapted to discrete metric spaces.
BKTree(Metric<E>) - Constructor for class smile.neighbor.BKTree
Constructor.
Bootstrap - Class in smile.validation
The bootstrap is a general tool for assessing statistical accuracy.
Bootstrap(int, int) - Constructor for class smile.validation.Bootstrap
Constructor.
branch(Tuple) - Method in class smile.base.cart.InternalNode
Returns true if the instance goes to the true branch.
branch(Tuple) - Method in class smile.base.cart.NominalNode
 
branch(Tuple) - Method in class smile.base.cart.OrdinalNode
 
bubble(int) - Static method in interface smile.vq.Neighborhood
Returns the bubble neighborhood function.
Bucket - Class in smile.neighbor.lsh
A bucket is a container for points that all have the same value for hash function g (function g is a vector of k LSH functions).
Bucket(int) - Constructor for class smile.neighbor.lsh.Bucket
Constructor.
bucket - Variable in class smile.neighbor.lsh.Bucket
The bucket id is given by the universal bucket hashing.
build(int) - Method in class smile.base.mlp.LayerBuilder
Creates a hidden layer.

C

CART - Class in smile.base.cart
Classification and regression tree.
CART(Formula, StructType, StructField, Node, double[]) - Constructor for class smile.base.cart.CART
Constructor.
CART(DataFrame, StructField, int, int, int, int, int[], int[][]) - Constructor for class smile.base.cart.CART
Constructor.
CentroidClustering<T,U> - Class in smile.clustering
In centroid-based clustering, clusters are represented by a central vector, which may not necessarily be a member of the data set.
CentroidClustering(double, T[], int[]) - Constructor for class smile.clustering.CentroidClustering
Constructor.
centroids - Variable in class smile.clustering.CentroidClustering
The centroids of each cluster.
centroids() - Method in class smile.vq.BIRCH
Returns the cluster centroids of leaf nodes.
Chromosome - Interface in smile.gap
Artificial chromosomes in genetic algorithm/programming encoding candidate solutions to an optimization problem.
CLARANS<T> - Class in smile.clustering
Clustering Large Applications based upon RANdomized Search.
CLARANS(double, T[], int[], Distance<T>) - Constructor for class smile.clustering.CLARANS
Constructor.
classification(T[], int[], BiFunction<T[], int[], Classifier<T>>) - Method in class smile.validation.Bootstrap
Runs cross validation tests.
classification(Formula, DataFrame, BiFunction<Formula, DataFrame, DataFrameClassifier>) - Method in class smile.validation.Bootstrap
Runs cross validation tests.
classification(int, T[], int[], BiFunction<T[], int[], Classifier<T>>) - Static method in class smile.validation.Bootstrap
Runs cross validation tests.
classification(int, Formula, DataFrame, BiFunction<Formula, DataFrame, DataFrameClassifier>) - Static method in class smile.validation.Bootstrap
Runs cross validation tests.
classification(T[], int[], BiFunction<T[], int[], Classifier<T>>) - Method in class smile.validation.CrossValidation
Runs cross validation tests.
classification(Formula, DataFrame, BiFunction<Formula, DataFrame, DataFrameClassifier>) - Method in class smile.validation.CrossValidation
Runs cross validation tests.
classification(int, T[], int[], BiFunction<T[], int[], Classifier<T>>) - Static method in class smile.validation.CrossValidation
Runs cross validation tests.
classification(int, Formula, DataFrame, BiFunction<Formula, DataFrame, DataFrameClassifier>) - Static method in class smile.validation.CrossValidation
Runs cross validation tests.
classification(T[], int[], BiFunction<T[], int[], Classifier<T>>) - Method in class smile.validation.GroupKFold
Runs cross validation tests.
classification(DataFrame, Function<DataFrame, DataFrameClassifier>) - Method in class smile.validation.GroupKFold
Runs cross validation tests.
classification(T[], int[], BiFunction<T[], int[], Classifier<T>>) - Static method in class smile.validation.LOOCV
Runs leave-one-out cross validation tests.
classification(Formula, DataFrame, BiFunction<Formula, DataFrame, DataFrameClassifier>) - Static method in class smile.validation.LOOCV
Runs leave-one-out cross validation tests.
ClassificationMeasure - Interface in smile.validation
An abstract interface to measure the classification performance.
Classifier<T> - Interface in smile.classification
A classifier assigns an input object into one of a given number of categories.
ClassLabels - Class in smile.classification
To support arbitrary class labels.
ClassLabels(int, int[], IntSet) - Constructor for class smile.classification.ClassLabels
Constructor.
ClassLabels(int, int[], IntSet, StructField) - Constructor for class smile.classification.ClassLabels
Constructor.
clear() - Method in class smile.base.cart.CART
Clear the workspace of building tree.
clear(double) - Method in class smile.vq.NeuralMap
Removes staled neurons and the edges beyond lifetime.
clone() - Method in class smile.neighbor.lsh.Probe
 
clustering(double[][], double[][], int[], int[]) - Method in class smile.clustering.BBDTree
Given k cluster centroids, this method assigns data to nearest centroids.
ClusterMeasure - Interface in smile.validation
An abstract interface to measure the clustering performance.
coefficients() - Method in class smile.regression.LinearModel
Returns the linear coefficients (without intercept).
CoifletWavelet - Class in smile.wavelet
Coiflet wavelets.
CoifletWavelet(int) - Constructor for class smile.wavelet.CoifletWavelet
Constructor.
comparator - Static variable in class smile.base.cart.Split
 
compareTo(CentroidClustering<T, U>) - Method in class smile.clustering.CentroidClustering
 
compareTo(MEC<T>) - Method in class smile.clustering.MEC
 
compareTo(Chromosome) - Method in class smile.gap.BitString
 
compareTo(PrH) - Method in class smile.neighbor.lsh.PrH
 
compareTo(Probe) - Method in class smile.neighbor.lsh.Probe
 
compareTo(PrZ) - Method in class smile.neighbor.lsh.PrZ
 
compareTo(Neighbor<K, V>) - Method in class smile.neighbor.Neighbor
 
compareTo(Neuron) - Method in class smile.vq.hebb.Neuron
 
CompleteLinkage - Class in smile.clustering.linkage
Complete linkage.
CompleteLinkage(double[][]) - Constructor for class smile.clustering.linkage.CompleteLinkage
Constructor.
CompleteLinkage(int, float[]) - Constructor for class smile.clustering.linkage.CompleteLinkage
Constructor.
components - Variable in class smile.projection.ICA
The independent components (row-wise).
computeError(double[], double) - Method in class smile.base.mlp.OutputLayer
Compute the network output error.
computeUpdate(double, double, double[]) - Method in class smile.base.mlp.Layer
Computes the updates of weight.
Concept - Class in smile.taxonomy
Concept is a set of synonyms, i.e.
Concept(Concept, String...) - Constructor for class smile.taxonomy.Concept
Constructor.
confidence - Variable in class smile.association.AssociationRule
The confidence value.
ConfusionMatrix - Class in smile.validation
The confusion matrix of truth and predictions.
ConfusionMatrix(int[][]) - Constructor for class smile.validation.ConfusionMatrix
Constructor.
consequent - Variable in class smile.association.AssociationRule
Consequent itemset.
coordinates - Variable in class smile.manifold.IsoMap
The coordinates.
coordinates - Variable in class smile.manifold.LaplacianEigenmap
Coordinate matrix.
coordinates - Variable in class smile.manifold.LLE
Coordinate matrix.
coordinates - Variable in class smile.manifold.TSNE
Coordinate matrix.
coordinates - Variable in class smile.mds.IsotonicMDS
The coordinates.
coordinates - Variable in class smile.mds.MDS
The principal coordinates.
coordinates - Variable in class smile.mds.SammonMapping
The coordinates.
cor(double[][]) - Static method in class smile.projection.PCA
Fits principal component analysis with correlation matrix.
Cost - Enum in smile.base.mlp
Neural network cost function.
cost() - Method in class smile.base.mlp.OutputLayer
Returns the cost function of neural network.
count() - Method in class smile.base.cart.DecisionNode
Returns the number of node samples in each class.
counter - Variable in class smile.vq.hebb.Neuron
The local counter variable (e.g.
CoverTree<E> - Class in smile.neighbor
Cover tree is a data structure for generic nearest neighbor search, which is especially efficient in spaces with small intrinsic dimension.
CoverTree(E[], Metric<E>) - Constructor for class smile.neighbor.CoverTree
Constructor.
CoverTree(E[], Metric<E>, double) - Constructor for class smile.neighbor.CoverTree
Constructor.
CRF - Class in smile.sequence
First-order linear conditional random field.
CRF(StructType, RegressionTree[][], double) - Constructor for class smile.sequence.CRF
Constructor.
CRFLabeler<T> - Class in smile.sequence
First-order CRF sequence labeler.
CRFLabeler(CRF, Function<T, Tuple>) - Constructor for class smile.sequence.CRFLabeler
Constructor.
crossover(Chromosome) - Method in class smile.gap.BitString
 
crossover(Chromosome) - Method in interface smile.gap.Chromosome
Returns a pair of offsprings by crossovering this one with another one according to the crossover rate, which determines how often will be crossover performed.
Crossover - Enum in smile.gap
The types of crossover operation.
CrossValidation - Class in smile.validation
Cross-validation is a technique for assessing how the results of a statistical analysis will generalize to an independent data set.
CrossValidation(int, int) - Constructor for class smile.validation.CrossValidation
Constructor.
CrossValidation(int, int, boolean) - Constructor for class smile.validation.CrossValidation
Constructor.

D

d(int, int) - Method in class smile.clustering.linkage.Linkage
Returns the distance/dissimilarity between two clusters/objects, which are indexed by integers.
d(String, String) - Method in class smile.taxonomy.TaxonomicDistance
Compute the distance between two concepts in a taxonomy.
d(Concept, Concept) - Method in class smile.taxonomy.TaxonomicDistance
Compute the distance between two concepts in a taxonomy.
d - Variable in class smile.vq.BIRCH
The dimensionality of data.
D4Wavelet - Class in smile.wavelet
The simplest and most localized wavelet, Daubechies wavelet of 4 coefficients.
D4Wavelet() - Constructor for class smile.wavelet.D4Wavelet
Constructor.
data - Variable in class smile.neighbor.LSH
The data objects.
DataFrameClassifier - Interface in smile.classification
Classification trait on DataFrame.
DataFrameRegression - Interface in smile.regression
Regression trait on DataFrame.
DaubechiesWavelet - Class in smile.wavelet
Daubechies wavelets.
DaubechiesWavelet(int) - Constructor for class smile.wavelet.DaubechiesWavelet
Constructor.
DBSCAN<T> - Class in smile.clustering
Density-Based Spatial Clustering of Applications with Noise.
DBSCAN(int, double, RNNSearch<T, T>, int, int[]) - Constructor for class smile.clustering.DBSCAN
Constructor.
DecisionNode - Class in smile.base.cart
A leaf node in decision tree.
DecisionNode(int[]) - Constructor for class smile.base.cart.DecisionNode
Constructor.
DecisionTree - Class in smile.classification
Decision tree for classification.
DecisionTree(DataFrame, int[], StructField, int, SplitRule, int, int, int, int, int[], int[][]) - Constructor for class smile.classification.DecisionTree
Constructor.
DENCLUE - Class in smile.clustering
DENsity CLUstering.
DENCLUE(int, double[][], double[], double[][], double, int[], double) - Constructor for class smile.clustering.DENCLUE
Constructor.
denoise(double[], Wavelet) - Static method in interface smile.wavelet.WaveletShrinkage
Adaptive hard-thresholding denoising a time series with given wavelet.
denoise(double[], Wavelet, boolean) - Static method in interface smile.wavelet.WaveletShrinkage
Adaptive denoising a time series with given wavelet.
depth() - Method in class smile.base.cart.InternalNode
 
depth() - Method in class smile.base.cart.LeafNode
 
depth() - Method in interface smile.base.cart.Node
Returns the maximum depth of the tree -- the number of nodes along the longest path from this node down to the farthest leaf node.
DeterministicAnnealing - Class in smile.clustering
Deterministic annealing clustering.
DeterministicAnnealing(double, double[][], int[]) - Constructor for class smile.clustering.DeterministicAnnealing
Constructor.
deviance() - Method in class smile.base.cart.DecisionNode
 
deviance(int[], double[]) - Static method in class smile.base.cart.DecisionNode
Returns the deviance of node.
deviance() - Method in class smile.base.cart.InternalNode
 
deviance() - Method in interface smile.base.cart.Node
Returns the deviance of node.
deviance() - Method in class smile.base.cart.RegressionNode
 
df() - Method in class smile.regression.LinearModel
Returns the degree-of-freedom of residual standard error.
dimension() - Method in class smile.classification.Maxent
Returns the dimension of input space.
DiscreteNaiveBayes - Class in smile.classification
Naive Bayes classifier for document classification in NLP.
DiscreteNaiveBayes(DiscreteNaiveBayes.Model, int, int) - Constructor for class smile.classification.DiscreteNaiveBayes
Constructor of naive Bayes classifier for document classification.
DiscreteNaiveBayes(DiscreteNaiveBayes.Model, int, int, double, IntSet) - Constructor for class smile.classification.DiscreteNaiveBayes
Constructor of naive Bayes classifier for document classification.
DiscreteNaiveBayes(DiscreteNaiveBayes.Model, double[], int) - Constructor for class smile.classification.DiscreteNaiveBayes
Constructor of naive Bayes classifier for document classification.
DiscreteNaiveBayes(DiscreteNaiveBayes.Model, double[], int, double, IntSet) - Constructor for class smile.classification.DiscreteNaiveBayes
Constructor of naive Bayes classifier for document classification.
DiscreteNaiveBayes.Model - Enum in smile.classification
The generation models of naive Bayes classifier.
distance(T, U) - Method in class smile.clustering.CentroidClustering
The distance function.
distance(T, T) - Method in class smile.clustering.CLARANS
 
distance(double[], double[]) - Method in class smile.clustering.DeterministicAnnealing
 
distance(double[], double[]) - Method in class smile.clustering.GMeans
 
distance(double[], double[]) - Method in class smile.clustering.KMeans
 
distance(int[], int[]) - Method in class smile.clustering.KModes
 
distance(double[], SparseArray) - Method in class smile.clustering.SIB
 
distance(double[], double[]) - Method in class smile.clustering.XMeans
 
distance - Variable in class smile.neighbor.Neighbor
The distance between the query and the neighbor.
distance - Variable in class smile.vq.hebb.Neuron
The distance between the neuron and an input signal.
distance(double[]) - Method in class smile.vq.hebb.Neuron
Computes the distance between the neuron and a signal.
distortion - Variable in class smile.clustering.CentroidClustering
The total distortion.
distortion - Variable in class smile.clustering.SpectralClustering
The distortion in feature space.
dot() - Method in class smile.base.cart.CART
Returns the graphic representation in Graphviz dot format.
dot(StructType, StructField, int) - Method in class smile.base.cart.DecisionNode
 
dot(StructType, StructField, int) - Method in interface smile.base.cart.Node
Returns a dot representation for visualization.
dot(StructType, StructField, int) - Method in class smile.base.cart.NominalNode
 
dot(StructType, StructField, int) - Method in class smile.base.cart.OrdinalNode
 
dot(StructType, StructField, int) - Method in class smile.base.cart.RegressionNode
 

E

Edge - Class in smile.vq.hebb
The connection between neurons.
Edge(Neuron) - Constructor for class smile.vq.hebb.Edge
Constructor.
Edge(Neuron, int) - Constructor for class smile.vq.hebb.Edge
Constructor.
edges - Variable in class smile.vq.hebb.Neuron
The direct connected neighbors.
ElasticNet - Class in smile.regression
Elastic Net regularization.
ElasticNet() - Constructor for class smile.regression.ElasticNet
 
entropy - Variable in class smile.clustering.MEC
The conditional entropy as the objective function.
entry - Variable in class smile.neighbor.lsh.Bucket
The indices of points that all have the same value for hash function g.
equals(Object) - Method in class smile.association.AssociationRule
 
equals(Object) - Method in class smile.association.ItemSet
 
equals(Object) - Method in class smile.base.cart.DecisionNode
 
equals(Object) - Method in class smile.base.cart.RegressionNode
 
error() - Method in class smile.classification.RandomForest
Returns the out-of-bag estimation of error rate.
error() - Method in class smile.regression.LinearModel
Returns the residual standard error.
error() - Method in class smile.regression.RandomForest
Returns the out-of-bag estimation of RMSE.
Error - Class in smile.validation
The number of errors in the population.
Error() - Constructor for class smile.validation.Error
 
estimate(int, double) - Method in class smile.neighbor.lsh.HashValueParzenModel
Given a hash value h, estimate the Gaussian model (mean and variance) of neighbors existing in the corresponding bucket.
eta - Variable in class smile.base.mlp.MultilayerPerceptron
learning rate
evolve(int) - Method in class smile.gap.GeneticAlgorithm
Performs genetic algorithm for a given number of generations.
evolve(int, double) - Method in class smile.gap.GeneticAlgorithm
Performs genetic algorithm until the given number of generations is reached or the best fitness is larger than the given threshold.
evolve() - Method in interface smile.gap.LamarckianChromosome
Performs a step of (hill-climbing) local search to evolve this chromosome.
expand() - Method in class smile.neighbor.lsh.Probe
This operation sets to one the component following the last nonzero component if it is not the last one.
extend() - Method in class smile.neighbor.lsh.Probe
This operation adds one to the last nonzero component.

F

f(double[]) - Method in interface smile.base.mlp.ActivationFunction
The output function.
f(double[]) - Method in class smile.base.mlp.HiddenLayer
 
f(double[]) - Method in class smile.base.mlp.Layer
The activation or output function.
f(double[]) - Method in enum smile.base.mlp.OutputFunction
The output function.
f(double[]) - Method in class smile.base.mlp.OutputLayer
 
f(T) - Method in class smile.base.rbf.RBF
The activation function.
f(T) - Method in class smile.base.svm.KernelMachine
Returns the decision function value.
f(double[]) - Method in class smile.base.svm.LinearKernelMachine
Returns the value of decision function.
f(int[]) - Method in class smile.base.svm.LinearKernelMachine
Returns the value of decision function.
f(SparseArray) - Method in class smile.base.svm.LinearKernelMachine
Returns the value of decision function.
f(T) - Method in interface smile.classification.Classifier
Returns the real-valued decision function value.
f(double) - Method in class smile.projection.ica.Gaussian
 
f(double) - Method in class smile.projection.ica.Kurtosis
 
f(double) - Method in class smile.projection.ica.LogCosh
 
Fallout - Class in smile.validation
Fall-out, false alarm rate, or false positive rate (FPR)
Fallout() - Constructor for class smile.validation.Fallout
 
falseChild() - Method in class smile.base.cart.InternalNode
Returns the false branch child.
FDR - Class in smile.validation
The false discovery rate (FDR) is ratio of false positives to combined true and false positives, which is actually 1 - precision.
FDR() - Constructor for class smile.validation.FDR
 
feature() - Method in class smile.base.cart.InternalNode
Returns the split feature.
FeatureRanking - Interface in smile.feature
Univariate feature ranking metric.
features - Variable in class smile.sequence.CRFLabeler
The feature function.
FeatureTransform - Interface in smile.feature
Feature transformation.
field - Variable in class smile.classification.ClassLabels
The optional meta data of response variable.
findBestSplit(LeafNode, int, int, boolean[]) - Method in class smile.base.cart.CART
Finds the best attribute to split on a set of samples.
findBestSplit(LeafNode, int, double, int, int) - Method in class smile.base.cart.CART
Finds the best split for given column.
findBestSplit(LeafNode, int, double, int, int) - Method in class smile.classification.DecisionTree
 
findBestSplit(LeafNode, int, double, int, int) - Method in class smile.regression.RegressionTree
 
fit(double[][], int) - Static method in class smile.base.rbf.RBF
Learns Gaussian RBF function and centers from data.
fit(double[][], int, int) - Static method in class smile.base.rbf.RBF
Learns Gaussian RBF function and centers from data.
fit(double[][], int, double) - Static method in class smile.base.rbf.RBF
Learns Gaussian RBF function and centers from data.
fit(T[], Metric<T>, int) - Static method in class smile.base.rbf.RBF
Learns Gaussian RBF function and centers from data.
fit(T[], Metric<T>, int, int) - Static method in class smile.base.rbf.RBF
Learns Gaussian RBF function and centers from data.
fit(T[], Metric<T>, int, double) - Static method in class smile.base.rbf.RBF
Learns Gaussian RBF function and centers from data.
fit(T[], int[]) - Method in class smile.base.svm.LASVM
Trains the model.
fit(T[], int[], int) - Method in class smile.base.svm.LASVM
Trains the model.
fit(T[], double[]) - Method in class smile.base.svm.SVR
Fits a epsilon support vector regression model.
fit(Formula, DataFrame) - Static method in class smile.classification.AdaBoost
Fits a AdaBoost model.
fit(Formula, DataFrame, Properties) - Static method in class smile.classification.AdaBoost
Fits a AdaBoost model.
fit(Formula, DataFrame, int, int, int, int) - Static method in class smile.classification.AdaBoost
Fits a AdaBoost model.
fit(int[]) - Static method in class smile.classification.ClassLabels
Learns the class label mapping from samples.
fit(int[], StructField) - Static method in class smile.classification.ClassLabels
Learns the class label mapping from samples.
fit(BaseVector) - Static method in class smile.classification.ClassLabels
Learns the class label mapping from samples.
fit(Formula, DataFrame) - Static method in class smile.classification.DecisionTree
Learns a classification tree.
fit(Formula, DataFrame, Properties) - Static method in class smile.classification.DecisionTree
Learns a classification tree.
fit(Formula, DataFrame, SplitRule, int, int, int) - Static method in class smile.classification.DecisionTree
Learns a classification tree.
fit(Formula, DataFrame) - Static method in class smile.classification.FLD
Learn Fisher's linear discriminant.
fit(Formula, DataFrame, Properties) - Static method in class smile.classification.FLD
Learn Fisher's linear discriminant.
fit(double[][], int[]) - Static method in class smile.classification.FLD
Learn Fisher's linear discriminant.
fit(double[][], int[], int, double) - Static method in class smile.classification.FLD
Learn Fisher's linear discriminant.
fit(Formula, DataFrame) - Static method in class smile.classification.GradientTreeBoost
Fits a gradient tree boosting for classification.
fit(Formula, DataFrame, Properties) - Static method in class smile.classification.GradientTreeBoost
Fits a gradient tree boosting for classification.
fit(Formula, DataFrame, int, int, int, int, double, double) - Static method in class smile.classification.GradientTreeBoost
Fits a gradient tree boosting for classification.
fit(double[], int[]) - Static method in class smile.classification.IsotonicRegressionScaling
Trains the Isotonic Regression scaling.
fit(T[], int[], Distance<T>) - Static method in class smile.classification.KNN
Learn the 1-NN classifier.
fit(T[], int[], Distance<T>, int) - Static method in class smile.classification.KNN
Learn the K-NN classifier.
fit(double[][], int[]) - Static method in class smile.classification.KNN
Learn the 1-NN classifier.
fit(double[][], int[], int) - Static method in class smile.classification.KNN
Learn the K-NN classifier.
fit(Formula, DataFrame) - Static method in class smile.classification.LDA
Learns linear discriminant analysis.
fit(Formula, DataFrame, Properties) - Static method in class smile.classification.LDA
Learns linear discriminant analysis.
fit(double[][], int[]) - Static method in class smile.classification.LDA
Learns linear discriminant analysis.
fit(double[][], int[], Properties) - Static method in class smile.classification.LDA
Learns linear discriminant analysis.
fit(double[][], int[], double[], double) - Static method in class smile.classification.LDA
Learns linear discriminant analysis.
fit(Formula, DataFrame) - Static method in class smile.classification.LogisticRegression
Learn logistic regression.
fit(Formula, DataFrame, Properties) - Static method in class smile.classification.LogisticRegression
Learn logistic regression.
fit(double[][], int[]) - Static method in class smile.classification.LogisticRegression
Learn logistic regression.
fit(double[][], int[], Properties) - Static method in class smile.classification.LogisticRegression
Learn logistic regression.
fit(double[][], int[], double, double, int) - Static method in class smile.classification.LogisticRegression
Learn logistic regression.
fit(int, int[][], int[]) - Static method in class smile.classification.Maxent
Learn maximum entropy classifier.
fit(int, int[][], int[], Properties) - Static method in class smile.classification.Maxent
Learn maximum entropy classifier.
fit(int, int[][], int[], double, double, int) - Static method in class smile.classification.Maxent
Learn maximum entropy classifier.
fit(T[], int[], BiFunction<T[], int[], Classifier<T>>) - Static method in class smile.classification.OneVersusOne
Fits a multi-class model with binary classifiers.
fit(T[], int[], int, int, BiFunction<T[], int[], Classifier<T>>) - Static method in class smile.classification.OneVersusOne
Fits a multi-class model with binary classifiers.
fit(T[], int[], BiFunction<T[], int[], Classifier<T>>) - Static method in class smile.classification.OneVersusRest
Fits a multi-class model with binary classifiers.
fit(T[], int[], int, int, BiFunction<T[], int[], Classifier<T>>) - Static method in class smile.classification.OneVersusRest
Fits a multi-class model with binary classifiers.
fit(double[], int[]) - Static method in class smile.classification.PlattScaling
Trains the Platt scaling.
fit(double[], int[], int) - Static method in class smile.classification.PlattScaling
Trains the Platt scaling.
fit(Classifier<T>, T[], int[]) - Static method in class smile.classification.PlattScaling
Fits Platt Scaling to estimate posteriori probabilities.
fit(Formula, DataFrame) - Static method in class smile.classification.QDA
Learns quadratic discriminant analysis.
fit(Formula, DataFrame, Properties) - Static method in class smile.classification.QDA
Learns quadratic discriminant analysis.
fit(double[][], int[]) - Static method in class smile.classification.QDA
Learn quadratic discriminant analysis.
fit(double[][], int[], Properties) - Static method in class smile.classification.QDA
Learns quadratic discriminant analysis.
fit(double[][], int[], double[], double) - Static method in class smile.classification.QDA
Learn quadratic discriminant analysis.
fit(Formula, DataFrame) - Static method in class smile.classification.RandomForest
Fits a random forest for classification.
fit(Formula, DataFrame, Properties) - Static method in class smile.classification.RandomForest
Fits a random forest for classification.
fit(Formula, DataFrame, int, int, SplitRule, int, int, int, double) - Static method in class smile.classification.RandomForest
Fits a random forest for classification.
fit(Formula, DataFrame, int, int, SplitRule, int, int, int, double, int[]) - Static method in class smile.classification.RandomForest
Fits a random forest for regression.
fit(Formula, DataFrame, int, int, SplitRule, int, int, int, double, int[], LongStream) - Static method in class smile.classification.RandomForest
Fits a random forest for classification.
fit(T[], int[], RBF<T>[]) - Static method in class smile.classification.RBFNetwork
Fits a RBF network.
fit(T[], int[], RBF<T>[], boolean) - Static method in class smile.classification.RBFNetwork
Fits a RBF network.
fit(Formula, DataFrame) - Static method in class smile.classification.RDA
Learns regularized discriminant analysis.
fit(Formula, DataFrame, Properties) - Static method in class smile.classification.RDA
Learns regularized discriminant analysis.
fit(double[][], int[], Properties) - Static method in class smile.classification.RDA
Learns regularized discriminant analysis.
fit(double[][], int[], double) - Static method in class smile.classification.RDA
Learn regularized discriminant analysis.
fit(double[][], int[], double, double[], double) - Static method in class smile.classification.RDA
Learn regularized discriminant analysis.
fit(double[][], int[], double, double) - Static method in class smile.classification.SVM
Fits a binary-class linear SVM.
fit(int[][], int[], int, double, double) - Static method in class smile.classification.SVM
Fits a binary-class linear SVM of binary sparse data.
fit(SparseArray[], int[], int, double, double) - Static method in class smile.classification.SVM
Fits a binary-class linear SVM.
fit(T[], int[], MercerKernel<T>, double, double) - Static method in class smile.classification.SVM
Fits a binary-class SVM.
fit(T[], Distance<T>, int) - Static method in class smile.clustering.CLARANS
Clustering data into k clusters.
fit(T[], Distance<T>, int, int) - Static method in class smile.clustering.CLARANS
Constructor.
fit(double[][], int, double) - Static method in class smile.clustering.DBSCAN
Clustering the data with KD-tree.
fit(T[], Distance<T>, int, double) - Static method in class smile.clustering.DBSCAN
Clustering the data.
fit(T[], RNNSearch<T, T>, int, double) - Static method in class smile.clustering.DBSCAN
Clustering the data.
fit(double[][], double, int) - Static method in class smile.clustering.DENCLUE
Clustering data.
fit(double[][], double, int, double, int) - Static method in class smile.clustering.DENCLUE
Clustering data.
fit(double[][], int) - Static method in class smile.clustering.DeterministicAnnealing
Clustering data into k clusters.
fit(double[][], int, double, int, double, double) - Static method in class smile.clustering.DeterministicAnnealing
Clustering data into k clusters.
fit(double[][], int) - Static method in class smile.clustering.GMeans
Clustering data with the number of clusters determined by G-Means algorithm automatically.
fit(double[][], int, int, double) - Static method in class smile.clustering.GMeans
Clustering data with the number of clusters determined by G-Means algorithm automatically.
fit(Linkage) - Static method in class smile.clustering.HierarchicalClustering
Fits the Agglomerative Hierarchical Clustering with given linkage method, which includes proximity matrix.
fit(double[][], int) - Static method in class smile.clustering.KMeans
Partitions data into k clusters up to 100 iterations.
fit(double[][], int, int, double) - Static method in class smile.clustering.KMeans
Partitions data into k clusters up to 100 iterations.
fit(BBDTree, double[][], int, int, double) - Static method in class smile.clustering.KMeans
Partitions data into k clusters.
fit(int[][], int) - Static method in class smile.clustering.KModes
Fits k-modes clustering.
fit(int[][], int, int) - Static method in class smile.clustering.KModes
Fits k-modes clustering.
fit(T[], Distance<T>, int, double) - Static method in class smile.clustering.MEC
Clustering the data.
fit(T[], RNNSearch<T, T>, int, double, int[], double) - Static method in class smile.clustering.MEC
Clustering the data.
fit(SparseArray[], int) - Static method in class smile.clustering.SIB
Clustering data into k clusters up to 100 iterations.
fit(SparseArray[], int, int) - Static method in class smile.clustering.SIB
Clustering data into k clusters.
fit(DenseMatrix, int) - Static method in class smile.clustering.SpectralClustering
Spectral graph clustering.
fit(DenseMatrix, int, int, double) - Static method in class smile.clustering.SpectralClustering
Spectral graph clustering.
fit(double[][], int, double) - Static method in class smile.clustering.SpectralClustering
Spectral clustering the data.
fit(double[][], int, double, int, double) - Static method in class smile.clustering.SpectralClustering
Spectral clustering the data.
fit(double[][], int, int, double) - Static method in class smile.clustering.SpectralClustering
Spectral clustering with Nystrom approximation.
fit(double[][], int, int, double, int, double) - Static method in class smile.clustering.SpectralClustering
Spectral clustering with Nystrom approximation.
fit(double[][], int) - Static method in class smile.clustering.XMeans
Clustering data with the number of clusters determined by X-Means algorithm automatically.
fit(double[][], int, int, double) - Static method in class smile.clustering.XMeans
Clustering data with the number of clusters determined by X-Means algorithm automatically.
fit(DataFrame) - Static method in class smile.feature.MaxAbsScaler
Learns transformation parameters from a dataset.
fit(double[][]) - Static method in class smile.feature.MaxAbsScaler
Learns transformation parameters from a dataset.
fit(DataFrame) - Static method in class smile.feature.RobustStandardizer
Learns transformation parameters from a dataset.
fit(double[][]) - Static method in class smile.feature.RobustStandardizer
Learns transformation parameters from a dataset.
fit(DataFrame) - Static method in class smile.feature.Scaler
Learns transformation parameters from a dataset.
fit(double[][]) - Static method in class smile.feature.Scaler
Learns transformation parameters from a dataset.
fit(DataFrame) - Static method in class smile.feature.Standardizer
Learns transformation parameters from a dataset.
fit(double[][]) - Static method in class smile.feature.Standardizer
Learns transformation parameters from a dataset.
fit(DataFrame) - Static method in class smile.feature.WinsorScaler
Learns transformation parameters from a dataset with 5% lower limit and 95% upper limit.
fit(DataFrame, double, double) - Static method in class smile.feature.WinsorScaler
Learns transformation parameters from a dataset.
fit(double[][]) - Static method in class smile.feature.WinsorScaler
Learns transformation parameters from a dataset.
fit(double[][], double, double) - Static method in class smile.feature.WinsorScaler
Learns transformation parameters from a dataset.
fit(T) - Method in interface smile.gap.FitnessMeasure
Returns the non-negative fitness value of a chromosome.
fit(RNNSearch<double[], double[]>, double[][], double) - Method in class smile.neighbor.MPLSH
Fits the posteriori multiple probe algorithm.
fit(RNNSearch<double[], double[]>, double[][], double, int) - Method in class smile.neighbor.MPLSH
Fits the posteriori multiple probe algorithm.
fit(RNNSearch<double[], double[]>, double[][], double, int, double) - Method in class smile.neighbor.MPLSH
Train the posteriori multiple probe algorithm.
fit(double[][], int) - Static method in class smile.projection.ICA
Fits independent component analysis.
fit(double[][], int, Properties) - Static method in class smile.projection.ICA
Fits independent component analysis.
fit(double[][], int, DifferentiableFunction, double, int) - Static method in class smile.projection.ICA
Fits independent component analysis.
fit(T[], MercerKernel<T>, int) - Static method in class smile.projection.KPCA
Fits kernel principal component analysis.
fit(T[], MercerKernel<T>, int, double) - Static method in class smile.projection.KPCA
Fits kernel principal component analysis.
fit(double[][]) - Static method in class smile.projection.PCA
Fits principal component analysis with covariance matrix.
fit(double[][], int) - Static method in class smile.projection.PPCA
Fits probabilistic principal component analysis.
fit(Formula, DataFrame, Properties) - Static method in class smile.regression.ElasticNet
Fit an Elastic Net model.
fit(Formula, DataFrame, double, double) - Static method in class smile.regression.ElasticNet
Fit an Elastic Net model.
fit(Formula, DataFrame, double, double, double, int) - Static method in class smile.regression.ElasticNet
Fit an Elastic Net model.
fit(T[], double[], MercerKernel<T>, double) - Static method in class smile.regression.GaussianProcessRegression
Fits a regular Gaussian process model.
fit(T[], double[], T[], MercerKernel<T>, double) - Static method in class smile.regression.GaussianProcessRegression
Fits an approximate Gaussian process model by the method of subset of regressors.
fit(Formula, DataFrame) - Static method in class smile.regression.GradientTreeBoost
Fits a gradient tree boosting for regression.
fit(Formula, DataFrame, Properties) - Static method in class smile.regression.GradientTreeBoost
Fits a gradient tree boosting for regression.
fit(Formula, DataFrame, Loss, int, int, int, int, double, double) - Static method in class smile.regression.GradientTreeBoost
Fits a gradient tree boosting for regression.
fit(Formula, DataFrame) - Static method in class smile.regression.LASSO
Fits a L1-regularized least squares model.
fit(Formula, DataFrame, Properties) - Static method in class smile.regression.LASSO
Fits a L1-regularized least squares model.
fit(Formula, DataFrame, double) - Static method in class smile.regression.LASSO
Fits a L1-regularized least squares model.
fit(Formula, DataFrame, double, double, int) - Static method in class smile.regression.LASSO
Fits a L1-regularized least squares model.
fit(Formula, DataFrame) - Static method in class smile.regression.OLS
Fits an ordinary least squares model.
fit(Formula, DataFrame, Properties) - Static method in class smile.regression.OLS
Fits an ordinary least squares model.
fit(Formula, DataFrame, String, boolean, boolean) - Static method in class smile.regression.OLS
Fits an ordinary least squares model.
fit(Formula, DataFrame) - Static method in class smile.regression.RandomForest
Learns a random forest for regression.
fit(Formula, DataFrame, Properties) - Static method in class smile.regression.RandomForest
Learns a random forest for regression.
fit(Formula, DataFrame, int, int, int, int, int, double) - Static method in class smile.regression.RandomForest
Learns a random forest for regression.
fit(Formula, DataFrame, int, int, int, int, int, double, LongStream) - Static method in class smile.regression.RandomForest
Learns a random forest for regression.
fit(T[], double[], RBF<T>[]) - Static method in class smile.regression.RBFNetwork
Fits a RBF network.
fit(T[], double[], RBF<T>[], boolean) - Static method in class smile.regression.RBFNetwork
Fits a RBF network.
fit(Formula, DataFrame) - Static method in class smile.regression.RegressionTree
Learns a regression tree.
fit(Formula, DataFrame, Properties) - Static method in class smile.regression.RegressionTree
Learns a regression tree.
fit(Formula, DataFrame, int, int, int) - Static method in class smile.regression.RegressionTree
Learns a regression tree.
fit(Formula, DataFrame) - Static method in class smile.regression.RidgeRegression
Fits a ridge regression model.
fit(Formula, DataFrame, Properties) - Static method in class smile.regression.RidgeRegression
Fits a ridge regression model.
fit(Formula, DataFrame, double) - Static method in class smile.regression.RidgeRegression
Fits a ridge regression model.
fit(double[][], double[], double, double, double) - Static method in class smile.regression.SVR
Fits a linear epsilon-SVR.
fit(int[][], double[], int, double, double, double) - Static method in class smile.regression.SVR
Fits a linear epsilon-SVR of binary sparse data.
fit(SparseArray[], double[], int, double, double, double) - Static method in class smile.regression.SVR
Fits a linear epsilon-SVR of sparse data.
fit(T[], double[], MercerKernel<T>, double, double, double) - Static method in class smile.regression.SVR
Fits a epsilon-SVR.
fit(Tuple[][], int[][]) - Static method in class smile.sequence.CRF
Fits a CRF model.
fit(Tuple[][], int[][], Properties) - Static method in class smile.sequence.CRF
Fits a CRF model.
fit(Tuple[][], int[][], int, int, int, int, double) - Static method in class smile.sequence.CRF
Fits a CRF model.
fit(T[][], int[][], Function<T, Tuple>) - Static method in class smile.sequence.CRFLabeler
Fits a CRF model.
fit(T[][], int[][], Function<T, Tuple>, Properties) - Static method in class smile.sequence.CRFLabeler
Fits a CRF model.
fit(T[][], int[][], Function<T, Tuple>, int, int, int, int, double) - Static method in class smile.sequence.CRFLabeler
Fits a CRF.
fit(int[][], int[][]) - Static method in class smile.sequence.HMM
Fits an HMM by maximum likelihood estimation.
fit(T[][], int[][], ToIntFunction<T>) - Static method in class smile.sequence.HMM
Fits an HMM by maximum likelihood estimation.
fit(T[][], int[][], ToIntFunction<T>) - Static method in class smile.sequence.HMMLabeler
Fits an HMM by maximum likelihood estimation.
fitness(double[][], int[], double[][], int[], ClassificationMeasure, BiFunction<double[][], int[], Classifier<double[]>>) - Static method in class smile.feature.GAFE
Returns a classification fitness measure.
fitness(double[][], double[], double[][], double[], RegressionMeasure, BiFunction<double[][], double[], Regression<double[]>>) - Static method in class smile.feature.GAFE
Returns a regression fitness measure.
fitness(String, DataFrame, DataFrame, ClassificationMeasure, BiFunction<Formula, DataFrame, DataFrameClassifier>) - Static method in class smile.feature.GAFE
Returns a classification fitness measure.
fitness(String, DataFrame, DataFrame, RegressionMeasure, BiFunction<Formula, DataFrame, DataFrameRegression>) - Static method in class smile.feature.GAFE
Returns a regression fitness measure.
fitness() - Method in class smile.gap.BitString
 
fitness() - Method in interface smile.gap.Chromosome
Returns the fitness of chromosome.
FitnessMeasure<T extends Chromosome> - Interface in smile.gap
A measure to evaluate the fitness of chromosomes.
fittedValues() - Method in class smile.regression.LinearModel
Returns the fitted values.
FLD - Class in smile.classification
Fisher's linear discriminant.
FLD(double[], double[][], DenseMatrix) - Constructor for class smile.classification.FLD
Constructor.
FLD(double[], double[][], DenseMatrix, IntSet) - Constructor for class smile.classification.FLD
Constructor.
FMeasure - Class in smile.validation
The F-score (or F-measure) considers both the precision and the recall of the test to compute the score.
FMeasure() - Constructor for class smile.validation.FMeasure
Constructor of F1 score.
FMeasure(double) - Constructor for class smile.validation.FMeasure
Constructor of general F-score.
formula - Variable in class smile.base.cart.CART
Design matrix formula
formula() - Method in class smile.classification.AdaBoost
 
formula() - Method in interface smile.classification.DataFrameClassifier
Returns the formula associated with the model.
formula() - Method in class smile.classification.DecisionTree
Returns null if the tree is part of ensemble algorithm.
formula() - Method in class smile.classification.GradientTreeBoost
 
formula() - Method in class smile.classification.RandomForest
 
formula() - Method in interface smile.regression.DataFrameRegression
Returns the formula associated with the model.
formula() - Method in class smile.regression.GradientTreeBoost
 
formula() - Method in class smile.regression.LinearModel
 
formula() - Method in class smile.regression.RandomForest
 
formula() - Method in class smile.regression.RegressionTree
Returns null if the tree is part of ensemble algorithm.
FPGrowth - Class in smile.association
Frequent item set mining based on the FP-growth (frequent pattern growth) algorithm, which employs an extended prefix-tree (FP-tree) structure to store the database in a compressed form.
FPTree - Class in smile.association
FP-tree data structure used in FP-growth (frequent pattern growth) algorithm for frequent item set mining.
ftest() - Method in class smile.regression.LinearModel
Returns the F-statistic of goodness-of-fit.

G

g(double[], double[]) - Method in interface smile.base.mlp.ActivationFunction
The gradient function.
g(Cost, double[], double[]) - Method in enum smile.base.mlp.OutputFunction
The gradient function.
g(double) - Method in class smile.projection.ica.Gaussian
 
g(double) - Method in class smile.projection.ica.Kurtosis
 
g(double) - Method in class smile.projection.ica.LogCosh
 
g2(double) - Method in class smile.projection.ica.Gaussian
 
g2(double) - Method in class smile.projection.ica.Kurtosis
 
g2(double) - Method in class smile.projection.ica.LogCosh
 
GAFE - Class in smile.feature
Genetic algorithm based feature selection.
GAFE() - Constructor for class smile.feature.GAFE
Constructor.
GAFE(Selection, int, Crossover, double, double) - Constructor for class smile.feature.GAFE
Constructor.
Gaussian - Class in smile.projection.ica
This function may be better than LogCosh when the independent components are highly super-Gaussian, or when robustness is very important.
Gaussian() - Constructor for class smile.projection.ica.Gaussian
 
Gaussian(double, double) - Static method in interface smile.vq.Neighborhood
Returns Gaussian neighborhood function.
GaussianProcessRegression - Class in smile.regression
Gaussian Process for Regression.
GaussianProcessRegression() - Constructor for class smile.regression.GaussianProcessRegression
 
GeneticAlgorithm<T extends Chromosome> - Class in smile.gap
A genetic algorithm (GA) is a search heuristic that mimics the process of natural evolution.
GeneticAlgorithm(T[]) - Constructor for class smile.gap.GeneticAlgorithm
Constructor.
GeneticAlgorithm(T[], Selection, int) - Constructor for class smile.gap.GeneticAlgorithm
Constructor.
get(int) - Method in class smile.neighbor.lsh.Hash
Returns the bucket entry for the given hash value.
get(double[]) - Method in class smile.neighbor.lsh.Hash
Returns the bucket entry for the given point.
getCenter() - Method in class smile.projection.PCA
Returns the center of data.
getCenter() - Method in class smile.projection.PPCA
Returns the center of data.
getChildren() - Method in class smile.taxonomy.Concept
Get all children concepts.
getConcept(String) - Method in class smile.taxonomy.Taxonomy
Returns a concept node which synset contains the keyword.
getConcepts() - Method in class smile.taxonomy.Taxonomy
Returns all named concepts from this taxonomy
getCoordinates() - Method in class smile.projection.KPCA
Returns the nonlinear principal component scores, i.e., the representation of learning data in the nonlinear principal component space.
getCumulativeVarianceProportion() - Method in class smile.projection.PCA
Returns the cumulative proportion of variance contained in principal components, ordered from largest to smallest.
getHeight() - Method in class smile.clustering.HierarchicalClustering
Returns a set of n-1 non-decreasing real values, which are the clustering height, i.e., the value of the criterion associated with the clustering method for the particular agglomeration.
getInitialStateProbabilities() - Method in class smile.sequence.HMM
Returns the initial state probabilities.
getInputSize() - Method in class smile.base.mlp.Layer
Returns the dimension of input vector (not including bias value).
getKeywords() - Method in class smile.taxonomy.Concept
Returns the concept synonym set.
getLearningRate() - Method in class smile.base.mlp.MultilayerPerceptron
Returns the learning rate.
getLearningRate() - Method in class smile.classification.LogisticRegression
Returns the learning rate of stochastic gradient descent.
getLearningRate() - Method in class smile.classification.Maxent
Returns the learning rate of stochastic gradient descent.
getLearningRate() - Method in class smile.projection.GHA
Returns the learning rate.
getLoadings() - Method in class smile.projection.PCA
Returns the variable loading matrix, ordered from largest to smallest by corresponding eigenvalues.
getLoadings() - Method in class smile.projection.PPCA
Returns the variable loading matrix, ordered from largest to smallest by corresponding eigenvalues.
getLocalSearchSteps() - Method in class smile.gap.GeneticAlgorithm
Gets the number of iterations of local search for Lamarckian algorithm.
getMomentum() - Method in class smile.base.mlp.MultilayerPerceptron
Returns the momentum factor.
getNoiseVariance() - Method in class smile.projection.PPCA
Returns the variance of noise.
getOutputSize() - Method in class smile.base.mlp.Layer
Returns the dimension of output vector.
getPathFromRoot() - Method in class smile.taxonomy.Concept
Returns the path from root to the given node.
getPathToRoot() - Method in class smile.taxonomy.Concept
Returns the path from the given node to the root.
getProbeSequence(double[], double, int) - Method in class smile.neighbor.lsh.PosterioriModel
Generate query-directed probes.
getProjection() - Method in class smile.classification.FLD
Returns the projection matrix W.
getProjection() - Method in class smile.projection.GHA
Returns the projection matrix.
getProjection() - Method in class smile.projection.KPCA
Returns the projection matrix.
getProjection() - Method in interface smile.projection.LinearProjection
Returns the projection matrix.
getProjection() - Method in class smile.projection.PCA
 
getProjection() - Method in class smile.projection.PPCA
Returns the projection matrix.
getProjection() - Method in class smile.projection.RandomProjection
 
getRoot() - Method in class smile.taxonomy.Taxonomy
Returns the root node of taxonomy tree.
getStateTransitionProbabilities() - Method in class smile.sequence.HMM
Returns the state transition probabilities.
getSymbolEmissionProbabilities() - Method in class smile.sequence.HMM
Returns the symbol emission probabilities.
getTree() - Method in class smile.clustering.HierarchicalClustering
Returns an n-1 by 2 matrix of which row i describes the merging of clusters at step i of the clustering.
getVariance() - Method in class smile.projection.PCA
Returns the principal component variances, ordered from largest to smallest, which are the eigenvalues of the covariance or correlation matrix of learning data.
getVarianceProportion() - Method in class smile.projection.PCA
Returns the proportion of variance contained in each principal component, ordered from largest to smallest.
getVariances() - Method in class smile.projection.KPCA
Returns the eigenvalues of kernel principal components, ordered from largest to smallest.
getWeightDecay() - Method in class smile.base.mlp.MultilayerPerceptron
Returns the weight decay factor.
GHA - Class in smile.projection
Generalized Hebbian Algorithm.
GHA(int, int, double) - Constructor for class smile.projection.GHA
Constructor.
GHA(double[][], double) - Constructor for class smile.projection.GHA
Constructor.
GMeans - Class in smile.clustering
G-Means clustering algorithm, an extended K-Means which tries to automatically determine the number of clusters by normality test.
GMeans(double, double[][], int[]) - Constructor for class smile.clustering.GMeans
Constructor.
gradient - Variable in class smile.base.mlp.Layer
The gradient vector.
gradient() - Method in class smile.base.mlp.Layer
Returns the error/gradient vector.
GradientTreeBoost - Class in smile.classification
Gradient boosting for classification.
GradientTreeBoost(Formula, RegressionTree[], double, double, double[]) - Constructor for class smile.classification.GradientTreeBoost
Constructor of binary class.
GradientTreeBoost(Formula, RegressionTree[], double, double, double[], IntSet) - Constructor for class smile.classification.GradientTreeBoost
Constructor of binary class.
GradientTreeBoost(Formula, RegressionTree[][], double, double[]) - Constructor for class smile.classification.GradientTreeBoost
Constructor of multi-class.
GradientTreeBoost(Formula, RegressionTree[][], double, double[], IntSet) - Constructor for class smile.classification.GradientTreeBoost
Constructor of multi-class.
GradientTreeBoost - Class in smile.regression
Gradient boosting for regression.
GradientTreeBoost(Formula, RegressionTree[], double, double, double[]) - Constructor for class smile.regression.GradientTreeBoost
Constructor.
graph - Variable in class smile.manifold.IsoMap
The nearest neighbor graph.
graph - Variable in class smile.manifold.LaplacianEigenmap
Nearest neighbor graph.
graph - Variable in class smile.manifold.LLE
Nearest neighbor graph.
GroupKFold - Class in smile.validation
GroupKfold is a cross validation technique that splits the data by respecting additional information about groups.
GroupKFold(int, int, int[]) - Constructor for class smile.validation.GroupKFold
Constructor.
GrowingNeuralGas - Class in smile.vq
Growing Neural Gas.
GrowingNeuralGas(int) - Constructor for class smile.vq.GrowingNeuralGas
Constructor.
GrowingNeuralGas(int, double, double, int, int, double, double) - Constructor for class smile.vq.GrowingNeuralGas
Constructor.

H

H - Variable in class smile.neighbor.LSH
The size of hash table.
H - Variable in class smile.neighbor.lsh.NeighborHashValueModel
Hash values of query object.
HaarWavelet - Class in smile.wavelet
Haar wavelet.
HaarWavelet() - Constructor for class smile.wavelet.HaarWavelet
Constructor.
Hash - Class in smile.neighbor.lsh
The hash function for Euclidean spaces.
hash - Variable in class smile.neighbor.LSH
Hash functions.
Hash(int, int, double, int) - Constructor for class smile.neighbor.lsh.Hash
Constructor.
hash(double[]) - Method in class smile.neighbor.lsh.Hash
Apply hash functions on given vector x.
hash(Hash, PrZ[]) - Method in class smile.neighbor.lsh.Probe
Returns the bucket number of the probe.
hash(T) - Method in interface smile.neighbor.lsh.SimHash
 
hashCode() - Method in class smile.association.AssociationRule
 
hashCode() - Method in class smile.association.ItemSet
 
HashValueParzenModel - Class in smile.neighbor.lsh
 
HashValueParzenModel(MultiProbeHash, MultiProbeSample[], double) - Constructor for class smile.neighbor.lsh.HashValueParzenModel
Constructor.
HiddenLayer - Class in smile.base.mlp
A hidden layer in the neural network.
HiddenLayer(int, int, ActivationFunction) - Constructor for class smile.base.mlp.HiddenLayer
Constructor.
HierarchicalClustering - Class in smile.clustering
Agglomerative Hierarchical Clustering.
HierarchicalClustering(int[][], double[]) - Constructor for class smile.clustering.HierarchicalClustering
Constructor.
HMM - Class in smile.sequence
First-order Hidden Markov Model.
HMM(double[], DenseMatrix, DenseMatrix) - Constructor for class smile.sequence.HMM
Constructor.
HMMLabeler<T> - Class in smile.sequence
First-order Hidden Markov Model sequence labeler.
HMMLabeler(HMM, ToIntFunction<T>) - Constructor for class smile.sequence.HMMLabeler
Constructor.
huber(double) - Static method in interface smile.base.cart.Loss
Huber loss function for M-regression, which attempts resistance to long-tailed error distributions and outliers while maintaining high efficiency for normally distributed errors.

I

ICA - Class in smile.projection
Independent Component Analysis (ICA) is a computational method for separating a multivariate signal into additive components.
ICA(double[][]) - Constructor for class smile.projection.ICA
Constructor.
importance - Variable in class smile.base.cart.CART
Variable importance.
importance() - Method in class smile.base.cart.CART
Returns the variable importance.
importance() - Method in class smile.classification.AdaBoost
Returns the variable importance.
importance() - Method in class smile.classification.GradientTreeBoost
Returns the variable importance.
importance() - Method in class smile.classification.RandomForest
Returns the variable importance.
importance() - Method in class smile.regression.GradientTreeBoost
Returns the variable importance.
importance() - Method in class smile.regression.RandomForest
Returns the variable importance.
impurity(LeafNode) - Method in class smile.base.cart.CART
Returns the impurity of node.
impurity(SplitRule) - Method in class smile.base.cart.DecisionNode
Returns the impurity of node.
impurity(SplitRule, int, int[]) - Static method in class smile.base.cart.DecisionNode
Returns the impurity of samples.
impurity() - Method in class smile.base.cart.RegressionNode
Returns the residual sum of squares.
impurity(LeafNode) - Method in class smile.classification.DecisionTree
 
impurity(LeafNode) - Method in class smile.regression.RegressionTree
 
impute(double[][]) - Method in class smile.imputation.AverageImputation
 
impute(double[][]) - Method in class smile.imputation.KMeansImputation
 
impute(double[][]) - Method in class smile.imputation.KNNImputation
 
impute(double[][]) - Method in class smile.imputation.LLSImputation
 
impute(double[][]) - Method in interface smile.imputation.MissingValueImputation
Impute missing values in the data.
impute(double[][]) - Method in class smile.imputation.SVDImputation
 
impute(double[][], int) - Method in class smile.imputation.SVDImputation
Impute missing values in the dataset.
imputeWithColumnAverage(double[][]) - Static method in interface smile.imputation.MissingValueImputation
Impute the missing values with column averages.
index - Variable in class smile.base.cart.CART
An index of samples to their original locations in training dataset.
index - Variable in class smile.manifold.IsoMap
The original sample index.
index - Variable in class smile.manifold.LaplacianEigenmap
The original sample index.
index - Variable in class smile.manifold.LLE
The original sample index.
index - Variable in class smile.neighbor.Neighbor
The index of neighbor object in the dataset.
indexOf(int[]) - Method in class smile.classification.ClassLabels
Maps the class labels to index.
initHashTable(int, int, int, double, int) - Method in class smile.neighbor.LSH
Initialize the hash tables.
initHashTable(int, int, int, double, int) - Method in class smile.neighbor.MPLSH
 
instance - Static variable in class smile.feature.SignalNoiseRatio
 
instance - Static variable in class smile.feature.SumSquaresRatio
 
instance - Static variable in class smile.validation.Accuracy
 
instance - Static variable in class smile.validation.AdjustedRandIndex
 
instance - Static variable in class smile.validation.Error
 
instance - Static variable in class smile.validation.Fallout
 
instance - Static variable in class smile.validation.FDR
 
instance - Static variable in class smile.validation.FMeasure
 
instance - Static variable in class smile.validation.MCC
 
instance - Static variable in class smile.validation.MeanAbsoluteDeviation
 
instance - Static variable in class smile.validation.MSE
 
instance - Static variable in class smile.validation.MutualInformation
 
instance - Static variable in class smile.validation.Precision
 
instance - Static variable in class smile.validation.RandIndex
 
instance - Static variable in class smile.validation.Recall
 
instance - Static variable in class smile.validation.RMSE
 
instance - Static variable in class smile.validation.RSS
 
instance - Static variable in class smile.validation.Sensitivity
 
instance - Static variable in class smile.validation.Specificity
 
instances() - Method in class smile.base.svm.KernelMachine
Returns the instances of kernel machines.
intercept(double[]) - Method in interface smile.base.cart.Loss
Returns the intercept of model.
intercept() - Method in class smile.base.svm.KernelMachine
Returns the intercept.
intercept() - Method in class smile.regression.LinearModel
Returns the intercept.
InternalNode - Class in smile.base.cart
An internal node in CART.
InternalNode(int, double, double, Node, Node) - Constructor for class smile.base.cart.InternalNode
 
inverse(double[]) - Method in class smile.wavelet.Wavelet
Inverse discrete wavelet transform.
isAncestorOf(Concept) - Method in class smile.taxonomy.Concept
Returns true if this concept is an ancestor of the given concept.
isExpandable() - Method in class smile.neighbor.lsh.Probe
 
isExtendable() - Method in class smile.neighbor.lsh.Probe
 
isLeaf() - Method in class smile.taxonomy.Concept
Check if a node is a leaf in the taxonomy tree.
isNormalized() - Method in class smile.classification.RBFNetwork
Returns true if the model is normalized.
isNormalized() - Method in class smile.regression.RBFNetwork
Returns true if the model is normalized.
IsoMap - Class in smile.manifold
Isometric feature mapping.
IsoMap(int[], double[][], Graph) - Constructor for class smile.manifold.IsoMap
Constructor.
IsotonicMDS - Class in smile.mds
Kruskal's nonmetric MDS.
IsotonicMDS(double, double[][]) - Constructor for class smile.mds.IsotonicMDS
Constructor.
IsotonicRegressionScaling - Class in smile.classification
A method to calibrate decision function value to probability.
IsotonicRegressionScaling(double[], double[]) - Constructor for class smile.classification.IsotonicRegressionScaling
Constructor.
isShiftable() - Method in class smile.neighbor.lsh.Probe
 
items - Variable in class smile.association.ItemSet
The set of items.
ItemSet - Class in smile.association
A set of items.
ItemSet(int[], int) - Constructor for class smile.association.ItemSet
Constructor.
iterator() - Method in class smile.association.ARM
 
iterator() - Method in class smile.association.FPGrowth
 

J

joint(int[], int[]) - Static method in class smile.validation.NormalizedMutualInformation
Calculates the normalized mutual information of I(y1, y2) / H(y1, y2).

K

k - Variable in class smile.classification.ClassLabels
The number of classes.
k - Variable in class smile.clustering.PartitionClustering
The number of clusters.
k - Variable in class smile.neighbor.LSH
The number of random projections per hash value.
k - Variable in class smile.validation.Bootstrap
The number of rounds of cross validation.
k - Variable in class smile.validation.CrossValidation
The number of rounds of cross validation.
k - Variable in class smile.validation.GroupKFold
The number of folds.
KDTree<E> - Class in smile.neighbor
A KD-tree (short for k-dimensional tree) is a space-partitioning dataset structure for organizing points in a k-dimensional space.
KDTree(double[][], E[]) - Constructor for class smile.neighbor.KDTree
Constructor.
kernel() - Method in class smile.base.svm.KernelMachine
Returns the kernel function.
KernelMachine<T> - Class in smile.base.svm
Kernel machines.
KernelMachine(MercerKernel<T>, T[], double[]) - Constructor for class smile.base.svm.KernelMachine
Constructor.
KernelMachine(MercerKernel<T>, T[], double[], double) - Constructor for class smile.base.svm.KernelMachine
Constructor.
KernelMachine<T> - Class in smile.regression
The learning methods building on kernels.
KernelMachine(MercerKernel<T>, T[], double[]) - Constructor for class smile.regression.KernelMachine
Constructor.
KernelMachine(MercerKernel<T>, T[], double[], double) - Constructor for class smile.regression.KernelMachine
Constructor.
key - Variable in class smile.neighbor.Neighbor
The key of neighbor.
keys - Variable in class smile.neighbor.LSH
The keys of data objects.
keys() - Method in class smile.neighbor.MutableLSH
Returns the keys.
KMeans - Class in smile.clustering
K-Means clustering.
KMeans(double, double[][], int[]) - Constructor for class smile.clustering.KMeans
Constructor.
KMeansImputation - Class in smile.imputation
Missing value imputation by K-Means clustering.
KMeansImputation(int) - Constructor for class smile.imputation.KMeansImputation
Constructor.
KMeansImputation(int, int) - Constructor for class smile.imputation.KMeansImputation
Constructor.
KModes - Class in smile.clustering
K-Modes clustering.
KModes(double, int[][], int[]) - Constructor for class smile.clustering.KModes
Constructor.
KNN<T> - Class in smile.classification
K-nearest neighbor classifier.
KNN(KNNSearch<T, T>, int[], int) - Constructor for class smile.classification.KNN
Constructor.
knn(E, int) - Method in class smile.neighbor.CoverTree
 
knn(double[], int) - Method in class smile.neighbor.KDTree
 
knn(K, int) - Method in interface smile.neighbor.KNNSearch
Search the k nearest neighbors to the query.
knn(T, int) - Method in class smile.neighbor.LinearSearch
 
knn(double[], int) - Method in class smile.neighbor.LSH
 
knn(double[], int) - Method in class smile.neighbor.MPLSH
 
knn(double[], int, double, int) - Method in class smile.neighbor.MPLSH
Returns the approximate k-nearest neighbors.
KNNImputation - Class in smile.imputation
Missing value imputation by k-nearest neighbors.
KNNImputation(int) - Constructor for class smile.imputation.KNNImputation
Constructor.
KNNSearch<K,V> - Interface in smile.neighbor
K-nearest neighbor search identifies the top k nearest neighbors to the query.
KPCA<T> - Class in smile.projection
Kernel principal component analysis.
KPCA(T[], MercerKernel<T>, double[], double, double[][], double[], DenseMatrix) - Constructor for class smile.projection.KPCA
Constructor.
Kurtosis - Class in smile.projection.ica
This function is justified on statistical grounds only for estimating sub-Gaussian independent components when there are no outliers.
Kurtosis() - Constructor for class smile.projection.ica.Kurtosis
 

L

L - Variable in class smile.vq.BIRCH
The number of CF entries in the leaf nodes.
labels - Variable in class smile.classification.ClassLabels
The class labels.
lad() - Static method in interface smile.base.cart.Loss
Least absolute deviation regression.
LamarckianChromosome - Interface in smile.gap
Artificial chromosomes used in Lamarckian algorithm that is a hybrid of of evolutionary computation and a local improver such as hill-climbing.
lambda - Variable in class smile.base.mlp.MultilayerPerceptron
weight decay factor, which is also a regularization term.
LaplacianEigenmap - Class in smile.manifold
Laplacian Eigenmap.
LaplacianEigenmap(int[], double[][], Graph) - Constructor for class smile.manifold.LaplacianEigenmap
Constructor with discrete weights.
LaplacianEigenmap(double, int[], double[][], Graph) - Constructor for class smile.manifold.LaplacianEigenmap
Constructor with Gaussian kernel.
LASSO - Class in smile.regression
Lasso (least absolute shrinkage and selection operator) regression.
LASSO() - Constructor for class smile.regression.LASSO
 
LASVM<T> - Class in smile.base.svm
LASVM is an approximate SVM solver that uses online approximation.
LASVM(MercerKernel<T>, double, double) - Constructor for class smile.base.svm.LASVM
Constructor.
LASVM(MercerKernel<T>, double, double, double) - Constructor for class smile.base.svm.LASVM
Constructor.
lattice(int, int, double[][]) - Static method in class smile.vq.SOM
Creates a lattice of which the weight vectors are randomly selected from samples.
Layer - Class in smile.base.mlp
A layer in the neural network.
Layer(int, int) - Constructor for class smile.base.mlp.Layer
Constructor.
LayerBuilder - Class in smile.base.mlp
The builder of layers.
LayerBuilder(int) - Constructor for class smile.base.mlp.LayerBuilder
Constructor.
LDA - Class in smile.classification
Linear discriminant analysis.
LDA(double[], double[][], double[], DenseMatrix) - Constructor for class smile.classification.LDA
Constructor.
LDA(double[], double[][], double[], DenseMatrix, IntSet) - Constructor for class smile.classification.LDA
Constructor.
LeafNode - Class in smile.base.cart
A leaf node in decision tree.
LeafNode(int) - Constructor for class smile.base.cart.LeafNode
Constructor.
leafs() - Method in class smile.base.cart.InternalNode
 
leafs() - Method in class smile.base.cart.LeafNode
 
leafs() - Method in interface smile.base.cart.Node
Returns the number of leaf nodes in the subtree.
length - Variable in class smile.gap.BitString
The length of chromosome.
length() - Method in class smile.gap.BitString
Returns the length of bit string.
leverage - Variable in class smile.association.AssociationRule
The difference between the probability of the rule and the expected probability if the items were statistically independent.
lift - Variable in class smile.association.AssociationRule
How many times more often antecedent and consequent occur together than expected if they were statistically independent.
linear() - Static method in interface smile.base.mlp.ActivationFunction
Linear/Identity function.
linear(int) - Static method in class smile.base.mlp.Layer
Returns a hidden layer with linear activation function.
LinearKernelMachine - Class in smile.base.svm
Linear kernel machine.
LinearKernelMachine(double[], double) - Constructor for class smile.base.svm.LinearKernelMachine
Constructor.
LinearModel - Class in smile.regression
Linear model.
LinearProjection - Interface in smile.projection
Linear projection.
LinearSearch<T> - Class in smile.neighbor
Brute force linear nearest neighbor search.
LinearSearch(T[], Distance<T>) - Constructor for class smile.neighbor.LinearSearch
Constructor.
Linkage - Class in smile.clustering.linkage
A measure of dissimilarity between clusters (i.e.
Linkage(double[][]) - Constructor for class smile.clustering.linkage.Linkage
Initialize the linkage with the lower triangular proximity matrix.
Linkage(int, float[]) - Constructor for class smile.clustering.linkage.Linkage
Initialize the linkage with the lower triangular proximity matrix.
LLE - Class in smile.manifold
Locally Linear Embedding.
LLE(int[], double[][], Graph) - Constructor for class smile.manifold.LLE
Constructor.
lloyd(double[][], int) - Static method in class smile.clustering.KMeans
The implementation of Lloyd algorithm as a benchmark.
lloyd(double[][], int, int, double) - Static method in class smile.clustering.KMeans
The implementation of Lloyd algorithm as a benchmark.
LLSImputation - Class in smile.imputation
Local least squares missing value imputation.
LLSImputation(int) - Constructor for class smile.imputation.LLSImputation
Constructor.
LogCosh - Class in smile.projection.ica
A good general-purpose function for ICA.
LogCosh() - Constructor for class smile.projection.ica.LogCosh
 
logistic(int[]) - Static method in interface smile.base.cart.Loss
Logistic regression loss for binary classification.
logistic(int, int, int[], double[][]) - Static method in interface smile.base.cart.Loss
Logistic regression loss for multi-class classification.
LogisticRegression - Class in smile.classification
Logistic regression.
LogisticRegression(double[], double, double) - Constructor for class smile.classification.LogisticRegression
Constructor of binary logistic regression.
LogisticRegression(double, double[], double, IntSet) - Constructor for class smile.classification.LogisticRegression
Constructor of binary logistic regression.
LogisticRegression(double, double[][], double) - Constructor for class smile.classification.LogisticRegression
Constructor of multi-class logistic regression.
LogisticRegression(double, double[][], double, IntSet) - Constructor for class smile.classification.LogisticRegression
Constructor of multi-class logistic regression.
loglikelihood() - Method in class smile.classification.LogisticRegression
Returns the log-likelihood of model.
loglikelihood() - Method in class smile.classification.Maxent
Returns the log-likelihood of model.
logp(int[], int[]) - Method in class smile.sequence.HMM
Returns the log joint probability of an observation sequence along a state sequence given this HMM.
logp(int[]) - Method in class smile.sequence.HMM
Returns the logarithm probability of an observation sequence given this HMM.
logp(T[], int[]) - Method in class smile.sequence.HMMLabeler
Returns the log joint probability of an observation sequence along a state sequence.
logp(T[]) - Method in class smile.sequence.HMMLabeler
Returns the logarithm probability of an observation sequence.
LOOCV - Class in smile.validation
Leave-one-out cross validation.
LOOCV(int) - Constructor for class smile.validation.LOOCV
Constructor.
Loss - Interface in smile.base.cart
Regression loss function.
Loss.Type - Enum in smile.base.cart
The type of loss.
lowestCommonAncestor(String, String) - Method in class smile.taxonomy.Taxonomy
Returns the lowest common ancestor (LCA) of concepts v and w.
lowestCommonAncestor(Concept, Concept) - Method in class smile.taxonomy.Taxonomy
Returns the lowest common ancestor (LCA) of concepts v and w.
ls() - Static method in interface smile.base.cart.Loss
Least squares regression.
ls(double[]) - Static method in interface smile.base.cart.Loss
Least squares regression.
LSH<E> - Class in smile.neighbor
Locality-Sensitive Hashing.
LSH(double[][], E[], double) - Constructor for class smile.neighbor.LSH
Constructor.
LSH(double[][], E[], double, int) - Constructor for class smile.neighbor.LSH
Constructor.
LSH(int, int, int, double) - Constructor for class smile.neighbor.LSH
Constructor.
LSH(int, int, int, double, int) - Constructor for class smile.neighbor.LSH
Constructor.

M

m - Variable in class smile.neighbor.lsh.PrZ
The index of hash function.
matrix - Variable in class smile.validation.ConfusionMatrix
Confusion matrix.
max(int[], int[]) - Static method in class smile.validation.AdjustedMutualInformation
Calculates the adjusted mutual information of (I(y1, y2) - E(MI)) / (max(H(y1), H(y2)) - E(MI)).
max(int[], int[]) - Static method in class smile.validation.NormalizedMutualInformation
Calculates the normalized mutual information of I(y1, y2) / max(H(y1), H(y2)).
MaxAbsScaler - Class in smile.feature
Scales each feature by its maximum absolute value.
MaxAbsScaler(StructType, double[]) - Constructor for class smile.feature.MaxAbsScaler
Constructor.
maxDepth - Variable in class smile.base.cart.CART
The maximum depth of the tree.
Maxent - Class in smile.classification
Maximum Entropy Classifier.
Maxent(double, double[]) - Constructor for class smile.classification.Maxent
Constructor of binary maximum entropy classifier.
Maxent(double, double[], IntSet) - Constructor for class smile.classification.Maxent
Constructor of binary maximum entropy classifier.
Maxent(double, double[][]) - Constructor for class smile.classification.Maxent
Constructor of multi-class maximum entropy classifier.
Maxent(double, double[][], IntSet) - Constructor for class smile.classification.Maxent
Constructor of multi-class maximum entropy classifier.
maxNodes - Variable in class smile.base.cart.CART
The maximum number of leaf nodes in the tree.
MCC - Class in smile.validation
Matthews correlation coefficient.The MCC is in essence a correlation coefficient between the observed and predicted binary classifications It is considered as a balanced measure for binary classification, even in unbalanced data sets.
MCC() - Constructor for class smile.validation.MCC
 
MDS - Class in smile.mds
Classical multidimensional scaling, also known as principal coordinates analysis.
MDS(double[], double[], double[][]) - Constructor for class smile.mds.MDS
Constructor.
mean() - Method in class smile.base.cart.RegressionNode
Returns the mean of response variable.
mean() - Method in class smile.neighbor.lsh.HashValueParzenModel
Returns the mean.
mean - Variable in class smile.neighbor.lsh.NeighborHashValueModel
Mean of hash values of neighbors.
MeanAbsoluteDeviation - Class in smile.validation
Mean absolute deviation error.
MeanAbsoluteDeviation() - Constructor for class smile.validation.MeanAbsoluteDeviation
 
measure(int[], int[]) - Method in class smile.validation.Accuracy
 
measure(int[], int[]) - Method in class smile.validation.AdjustedMutualInformation
 
measure(int[], int[]) - Method in class smile.validation.AdjustedRandIndex
 
measure(int[], int[]) - Method in interface smile.validation.ClassificationMeasure
Returns an index to measure the quality of classification.
measure(int[], int[]) - Method in interface smile.validation.ClusterMeasure
Returns an index to measure the quality of clustering.
measure(int[], int[]) - Method in class smile.validation.Error
 
measure(int[], int[]) - Method in class smile.validation.Fallout
 
measure(int[], int[]) - Method in class smile.validation.FDR
 
measure(int[], int[]) - Method in class smile.validation.FMeasure
 
measure(int[], int[]) - Method in class smile.validation.MCC
 
measure(double[], double[]) - Method in class smile.validation.MeanAbsoluteDeviation
 
measure(double[], double[]) - Method in class smile.validation.MSE
 
measure(int[], int[]) - Method in class smile.validation.MutualInformation
 
measure(int[], int[]) - Method in class smile.validation.NormalizedMutualInformation
 
measure(int[], int[]) - Method in class smile.validation.Precision
 
measure(int[], int[]) - Method in class smile.validation.RandIndex
 
measure(int[], int[]) - Method in class smile.validation.Recall
 
measure(double[], double[]) - Method in interface smile.validation.RegressionMeasure
Returns an index to measure the quality of regression.
measure(double[], double[]) - Method in class smile.validation.RMSE
 
measure(double[], double[]) - Method in class smile.validation.RSS
 
measure(int[], int[]) - Method in class smile.validation.Sensitivity
 
measure(int[], int[]) - Method in class smile.validation.Specificity
 
MEC<T> - Class in smile.clustering
Non-parametric Minimum Conditional Entropy Clustering.
MEC(double, double, RNNSearch<T, T>, int, int[]) - Constructor for class smile.clustering.MEC
Constructor.
merge() - Method in class smile.base.cart.InternalNode
 
merge() - Method in class smile.base.cart.LeafNode
 
merge() - Method in interface smile.base.cart.Node
Try to merge the children nodes and return a leaf node.
merge(int, int) - Method in class smile.clustering.linkage.CompleteLinkage
 
merge(int, int) - Method in class smile.clustering.linkage.Linkage
Merge two clusters into one and update the proximity matrix.
merge(int, int) - Method in class smile.clustering.linkage.SingleLinkage
 
merge(int, int) - Method in class smile.clustering.linkage.UPGMALinkage
 
merge(int, int) - Method in class smile.clustering.linkage.UPGMCLinkage
 
merge(int, int) - Method in class smile.clustering.linkage.WardLinkage
 
merge(int, int) - Method in class smile.clustering.linkage.WPGMALinkage
 
merge(int, int) - Method in class smile.clustering.linkage.WPGMCLinkage
 
merge(RandomForest) - Method in class smile.regression.RandomForest
Merges together two random forests and returns a new forest consisting of trees from both input forests.
min(int[], int[]) - Static method in class smile.validation.AdjustedMutualInformation
Calculates the adjusted mutual information of (I(y1, y2) - E(MI)) / (min(H(y1), H(y2)) - E(MI)).
min(int[], int[]) - Static method in class smile.validation.NormalizedMutualInformation
Calculates the normalized mutual information of I(y1, y2) / min(H(y1), H(y2)).
minPts - Variable in class smile.clustering.DBSCAN
The minimum number of points required to form a cluster
minSupport() - Method in class smile.association.FPTree
Returns the required minimum support of item sets in terms of frequency.
MissingValueImputation - Interface in smile.imputation
Interface to impute missing values in the data.
MissingValueImputationException - Exception in smile.imputation
Exception of missing value imputation.
MissingValueImputationException() - Constructor for exception smile.imputation.MissingValueImputationException
Constructor.
MissingValueImputationException(String) - Constructor for exception smile.imputation.MissingValueImputationException
Constructor.
mle(int, OutputFunction) - Static method in class smile.base.mlp.Layer
Returns an output layer with (log-)likelihood cost function.
MLP - Class in smile.classification
Fully connected multilayer perceptron neural network for classification.
MLP(int, LayerBuilder...) - Constructor for class smile.classification.MLP
Constructor.
MLP(IntSet, int, LayerBuilder...) - Constructor for class smile.classification.MLP
Constructor.
MLP - Class in smile.regression
Fully connected multilayer perceptron neural network for regression.
MLP(int, LayerBuilder...) - Constructor for class smile.regression.MLP
Constructor.
model - Variable in class smile.sequence.CRFLabeler
The CRF model.
model - Variable in class smile.sequence.HMMLabeler
The HMM model.
MPLSH<E> - Class in smile.neighbor
Multi-Probe Locality-Sensitive Hashing.
MPLSH(int, int, int, double) - Constructor for class smile.neighbor.MPLSH
Constructor.
MPLSH(int, int, int, double, int) - Constructor for class smile.neighbor.MPLSH
Constructor.
mse(int, OutputFunction) - Static method in class smile.base.mlp.Layer
Returns an output layer with mean squared error cost function.
MSE - Class in smile.validation
Mean squared error.
MSE() - Constructor for class smile.validation.MSE
 
mtry - Variable in class smile.base.cart.CART
The number of input variables to be used to determine the decision at a node of the tree.
MultilayerPerceptron - Class in smile.base.mlp
Fully connected multilayer perceptron neural network.
MultilayerPerceptron(Layer...) - Constructor for class smile.base.mlp.MultilayerPerceptron
Constructor.
MultiProbeHash - Class in smile.neighbor.lsh
The hash function for data in Euclidean spaces.
MultiProbeHash(int, int, double, int) - Constructor for class smile.neighbor.lsh.MultiProbeHash
Constructor.
MultiProbeSample - Class in smile.neighbor.lsh
Training sample for MPLSH.
MultiProbeSample(double[], List<double[]>) - Constructor for class smile.neighbor.lsh.MultiProbeSample
Constructor.
MutableLSH<E> - Class in smile.neighbor
Mutable LSH.
MutableLSH(int, int, int, double) - Constructor for class smile.neighbor.MutableLSH
Constructor.
mutate() - Method in class smile.gap.BitString
 
mutate() - Method in interface smile.gap.Chromosome
For genetic algorithms, this method mutates the chromosome randomly.
MutualInformation - Class in smile.validation
Mutual Information for comparing clustering.
MutualInformation() - Constructor for class smile.validation.MutualInformation
 

N

n - Variable in class smile.base.mlp.Layer
The number of neurons in this layer
n - Variable in class smile.base.mlp.LayerBuilder
The number of neurons.
NaiveBayes - Class in smile.classification
Naive Bayes classifier.
NaiveBayes(double[], Distribution[][]) - Constructor for class smile.classification.NaiveBayes
Constructor of general naive Bayes classifier.
NaiveBayes(double[], Distribution[][], IntSet) - Constructor for class smile.classification.NaiveBayes
Constructor of general naive Bayes classifier.
name() - Method in interface smile.base.mlp.ActivationFunction
Returns the name of activation function.
nearest(E) - Method in class smile.neighbor.CoverTree
 
nearest(double[]) - Method in class smile.neighbor.KDTree
 
nearest(T) - Method in class smile.neighbor.LinearSearch
 
nearest(double[]) - Method in class smile.neighbor.LSH
 
nearest(double[]) - Method in class smile.neighbor.MPLSH
 
nearest(double[], double, int) - Method in class smile.neighbor.MPLSH
Returns the approximate nearest neighbor.
nearest(K) - Method in interface smile.neighbor.NearestNeighborSearch
Search the nearest neighbor to the given sample.
NearestNeighborSearch<K,V> - Interface in smile.neighbor
Nearest neighbor search, also known as proximity search, similarity search or closest point search, is an optimization problem for finding closest points in metric spaces.
Neighbor<K,V> - Class in smile.neighbor
The immutable object encapsulates the results of nearest neighbor search.
Neighbor(K, V, int, double) - Constructor for class smile.neighbor.Neighbor
Constructor.
neighbor - Variable in class smile.vq.hebb.Edge
The neighbor neuron.
NeighborHashValueModel - Class in smile.neighbor.lsh
Gaussian model of hash values of nearest neighbor.
NeighborHashValueModel(double[], double[], double[]) - Constructor for class smile.neighbor.lsh.NeighborHashValueModel
Constructor.
Neighborhood - Interface in smile.vq
The neighborhood function for 2-dimensional lattice topology (e.g.
neighbors - Variable in class smile.neighbor.lsh.MultiProbeSample
Neighbors of query object in terms of kNN or range search.
net - Variable in class smile.base.mlp.MultilayerPerceptron
The hidden layers.
network() - Method in class smile.vq.NeuralGas
Returns the network of neurons.
NeuralGas - Class in smile.vq
Neural Gas soft competitive learning algorithm.
NeuralGas(double[][], TimeFunction, TimeFunction, int) - Constructor for class smile.vq.NeuralGas
Constructor.
NeuralMap - Class in smile.vq
NeuralMap is an efficient competitive learning algorithm inspired by growing neural gas and BIRCH.
NeuralMap(double, double, double, int, double) - Constructor for class smile.vq.NeuralMap
Constructor.
Neuron - Class in smile.vq.hebb
The neuron vertex in the growing neural gas network.
Neuron(double[]) - Constructor for class smile.vq.hebb.Neuron
Constructor.
Neuron(double[], double) - Constructor for class smile.vq.hebb.Neuron
Constructor.
neurons() - Method in class smile.base.mlp.LayerBuilder
Returns the number of neurons.
neurons() - Method in class smile.vq.GrowingNeuralGas
Returns the neurons in the network.
neurons() - Method in class smile.vq.NeuralGas
Returns the neurons.
neurons() - Method in class smile.vq.NeuralMap
Returns the set of neurons.
neurons() - Method in class smile.vq.SOM
Returns the lattice of neurons.
newInstance() - Method in class smile.gap.BitString
 
newInstance(byte[]) - Method in class smile.gap.BitString
Creates a new instance with given bits.
newInstance() - Method in interface smile.gap.Chromosome
Returns a new random instance.
newNode(int[]) - Method in class smile.base.cart.CART
Creates a new leaf node.
newNode(int[]) - Method in class smile.classification.DecisionTree
 
newNode(int[]) - Method in class smile.regression.RegressionTree
 
ni - Variable in class smile.classification.ClassLabels
The number of samples per classes.
Node - Interface in smile.base.cart
CART tree node.
nodeSize - Variable in class smile.base.cart.CART
The number of instances in a node below which the tree will not split, setting nodeSize = 5 generally gives good results.
NominalNode - Class in smile.base.cart
A node with a nominal split variable.
NominalNode(int, int, double, double, Node, Node) - Constructor for class smile.base.cart.NominalNode
Constructor.
NominalSplit - Class in smile.base.cart
The data about of a potential split for a leaf node.
NominalSplit(LeafNode, int, int, double, int, int, int, int, IntPredicate) - Constructor for class smile.base.cart.NominalSplit
Constructor.
NormalizedMutualInformation - Class in smile.validation
Normalized Mutual Information (NMI) for comparing clustering.
NormalizedMutualInformation(NormalizedMutualInformation.Method) - Constructor for class smile.validation.NormalizedMutualInformation
Constructor.
NormalizedMutualInformation.Method - Enum in smile.validation
The normalization method.
Normalizer - Class in smile.feature
Normalize samples individually to unit norm.
Normalizer() - Constructor for class smile.feature.Normalizer
Default constructor with L2 norm.
Normalizer(Normalizer.Norm) - Constructor for class smile.feature.Normalizer
Constructor.
Normalizer.Norm - Enum in smile.feature
The types of data scaling.
nystrom(T[], double[], T[], MercerKernel<T>, double) - Static method in class smile.regression.GaussianProcessRegression
Fits an approximate Gaussian process model with Nystrom approximation of kernel matrix.

O

of(int, Supplier<Stream<int[]>>) - Static method in class smile.association.FPTree
One-step construction of FP-tree if the database is available as stream.
of(double, Supplier<Stream<int[]>>) - Static method in class smile.association.FPTree
One-step construction of FP-tree if the database is available as stream.
of(int, int[][]) - Static method in class smile.association.FPTree
One-step construction of FP-tree if the database is available in main memory.
of(double, int[][]) - Static method in class smile.association.FPTree
One-step construction of FP-tree if the database is available in main memory.
of(T[], RadialBasisFunction, Metric<T>) - Static method in class smile.base.rbf.RBF
Makes a set of RBF neurons.
of(T[], RadialBasisFunction[], Metric<T>) - Static method in class smile.base.rbf.RBF
Makes a set of RBF neurons.
of(KernelMachine<double[]>) - Static method in class smile.base.svm.LinearKernelMachine
Creates a linear kernel machine.
of(double[][]) - Static method in class smile.clustering.linkage.CompleteLinkage
Given a set of data, computes the proximity and then the linkage.
of(T[], Distance<T>) - Static method in class smile.clustering.linkage.CompleteLinkage
Given a set of data, computes the proximity and then the linkage.
of(double[][]) - Static method in class smile.clustering.linkage.SingleLinkage
Given a set of data, computes the proximity and then the linkage.
of(T[], Distance<T>) - Static method in class smile.clustering.linkage.SingleLinkage
Given a set of data, computes the proximity and then the linkage.
of(double[][]) - Static method in class smile.clustering.linkage.UPGMALinkage
Given a set of data, computes the proximity and then the linkage.
of(T[], Distance<T>) - Static method in class smile.clustering.linkage.UPGMALinkage
Given a set of data, computes the proximity and then the linkage.
of(double[][]) - Static method in class smile.clustering.linkage.UPGMCLinkage
Given a set of data, computes the proximity and then the linkage.
of(T[], Distance<T>) - Static method in class smile.clustering.linkage.UPGMCLinkage
Given a set of data, computes the proximity and then the linkage.
of(double[][]) - Static method in class smile.clustering.linkage.WardLinkage
Given a set of data, computes the proximity and then the linkage.
of(T[], Distance<T>) - Static method in class smile.clustering.linkage.WardLinkage
Given a set of data, computes the proximity and then the linkage.
of(double[][]) - Static method in class smile.clustering.linkage.WPGMALinkage
Given a set of data, computes the proximity and then the linkage.
of(T[], Distance<T>) - Static method in class smile.clustering.linkage.WPGMALinkage
Given a set of data, computes the proximity and then the linkage.
of(double[][]) - Static method in class smile.clustering.linkage.WPGMCLinkage
Given a set of data, computes the proximity and then the linkage.
of(T[], Distance<T>) - Static method in class smile.clustering.linkage.WPGMCLinkage
Given a set of data, computes the proximity and then the linkage.
of(double[][], int[]) - Static method in class smile.feature.SignalNoiseRatio
Univariate feature ranking.
of(double[][], int[]) - Static method in class smile.feature.SumSquaresRatio
Univariate feature ranking.
of(double[][], int) - Static method in class smile.manifold.IsoMap
Runs the C-Isomap algorithm.
of(double[][], int, int, boolean) - Static method in class smile.manifold.IsoMap
Runs the Isomap algorithm.
of(double[][], int) - Static method in class smile.manifold.LaplacianEigenmap
Laplacian Eigenmaps with discrete weights.
of(double[][], int, int, double) - Static method in class smile.manifold.LaplacianEigenmap
Laplacian Eigenmap with Gaussian kernel.
of(double[][], int) - Static method in class smile.manifold.LLE
Runs the LLE algorithm.
of(double[][], int, int) - Static method in class smile.manifold.LLE
Runs the LLE algorithm.
of(double[][]) - Static method in class smile.mds.IsotonicMDS
Fits Kruskal's non-metric MDS with default k = 2, tolerance = 1E-4 and maxIter = 200.
of(double[][], int) - Static method in class smile.mds.IsotonicMDS
Fits Kruskal's non-metric MDS.
of(double[][], Properties) - Static method in class smile.mds.IsotonicMDS
Fits Kruskal's non-metric MDS.
of(double[][], int, double, int) - Static method in class smile.mds.IsotonicMDS
Fits Kruskal's non-metric MDS.
of(double[][], double[][], double, int) - Static method in class smile.mds.IsotonicMDS
Fits Kruskal's non-metric MDS.
of(double[][]) - Static method in class smile.mds.MDS
Fits the classical multidimensional scaling.
of(double[][], int) - Static method in class smile.mds.MDS
Fits the classical multidimensional scaling.
of(double[][], Properties) - Static method in class smile.mds.MDS
Fits the classical multidimensional scaling.
of(double[][], int, boolean) - Static method in class smile.mds.MDS
Fits the classical multidimensional scaling.
of(double[][]) - Static method in class smile.mds.SammonMapping
Fits Sammon's mapping with default k = 2, lambda = 0.2, tolerance = 1E-4 and maxIter = 100.
of(double[][], int) - Static method in class smile.mds.SammonMapping
Fits Sammon's mapping.
of(double[][], Properties) - Static method in class smile.mds.SammonMapping
Fits Sammon's mapping.
of(double[][], int, double, double, double, int) - Static method in class smile.mds.SammonMapping
Fits Sammon's mapping.
of(double[][], double[][], double, double, double, int) - Static method in class smile.mds.SammonMapping
Fits Sammon's mapping.
of(byte[][]) - Static method in interface smile.neighbor.lsh.SimHash
Returns the simhash for a set of generic features (represented as byte[]).
of(T, int, double) - Static method in class smile.neighbor.Neighbor
Creates a neighbor object, of which key and object are the same.
of(int, int) - Static method in class smile.projection.RandomProjection
Generates a non-sparse random projection.
of(int[], int[]) - Static method in class smile.validation.Accuracy
Calculates the classification accuracy.
of(int[], int[]) - Static method in class smile.validation.AdjustedRandIndex
Calculates the adjusted rand index.
of(int[], double[]) - Static method in class smile.validation.AUC
Caulculate AUC for binary classifier.
of(int[], int[]) - Static method in class smile.validation.ConfusionMatrix
Creates the confusion matrix.
of(int[], int[]) - Static method in class smile.validation.Error
Calculates the number of errors.
of(int[], int[]) - Static method in class smile.validation.Fallout
Calculates the false alarm rate.
of(int[], int[]) - Static method in class smile.validation.FDR
Calculates the false discovery rate.
of(int[], int[]) - Static method in class smile.validation.FMeasure
Calculates the F1 score.
of(int[], int[]) - Static method in class smile.validation.MCC
Calculates Matthews correlation coefficient.
of(double[], double[]) - Static method in class smile.validation.MeanAbsoluteDeviation
Calculates the mean absolute deviation error.
of(double[], double[]) - Static method in class smile.validation.MSE
Calculates the mean squared error.
of(int[], int[]) - Static method in class smile.validation.MutualInformation
Calculates the mutual information.
of(int[], int[]) - Static method in class smile.validation.Precision
Calculates the precision.
of(int[], int[]) - Static method in class smile.validation.RandIndex
Calculates the rand index.
of(int[], int[]) - Static method in class smile.validation.Recall
Calculates the recall/sensitivity.
of(double[], double[]) - Static method in class smile.validation.RMSE
Calculates the root mean squared error.
of(double[], double[]) - Static method in class smile.validation.RSS
Calculates the residual sum of squares.
of(int[], int[]) - Static method in class smile.validation.Sensitivity
Calculates the sensitivity.
of(int[], int[]) - Static method in class smile.validation.Specificity
Calculates the specificity.
of(int, int, int) - Method in interface smile.vq.Neighborhood
Returns the changing rate of neighborhood at a given iteration.
OLS - Class in smile.regression
Ordinary least squares.
OLS() - Constructor for class smile.regression.OLS
 
OneVersusOne<T> - Class in smile.classification
One-vs-one strategy for reducing the problem of multiclass classification to multiple binary classification problems.
OneVersusOne(Classifier<T>[][], PlattScaling[][]) - Constructor for class smile.classification.OneVersusOne
Constructor.
OneVersusOne(Classifier<T>[][], PlattScaling[][], IntSet) - Constructor for class smile.classification.OneVersusOne
Constructor.
OneVersusRest<T> - Class in smile.classification
One-vs-rest (or one-vs-all) strategy for reducing the problem of multiclass classification to multiple binary classification problems.
OneVersusRest(Classifier<T>[], PlattScaling[]) - Constructor for class smile.classification.OneVersusRest
Constructor.
OneVersusRest(Classifier<T>[], PlattScaling[], IntSet) - Constructor for class smile.classification.OneVersusRest
Constructor.
OnlineClassifier<T> - Interface in smile.classification
Classifier with online learning capability.
OnlineRegression<T> - Interface in smile.regression
Regression model with online learning capability.
order - Variable in class smile.base.cart.CART
An index of training values.
order(DataFrame) - Static method in class smile.base.cart.CART
Returns the index of ordered samples for each ordinal column.
ordinal - Variable in class smile.sequence.HMMLabeler
The lambda returns the ordinal numbers of symbols.
OrdinalNode - Class in smile.base.cart
A node with a ordinal split variable (real-valued or ordinal categorical value).
OrdinalNode(int, double, double, double, Node, Node) - Constructor for class smile.base.cart.OrdinalNode
Constructor.
OrdinalSplit - Class in smile.base.cart
The data about of a potential split for a leaf node.
OrdinalSplit(LeafNode, int, double, double, int, int, int, int, IntPredicate) - Constructor for class smile.base.cart.OrdinalSplit
Constructor.
OUTLIER - Static variable in class smile.clustering.PartitionClustering
Cluster label for outliers or noises.
OUTLIER - Static variable in interface smile.vq.VectorQuantizer
The label for outliers or noises.
output() - Method in class smile.base.cart.DecisionNode
Returns the predicted value.
output(int[], int[]) - Method in interface smile.base.cart.Loss
Calculate the node output.
output() - Method in class smile.base.cart.RegressionNode
Returns the predicted value.
output - Variable in class smile.base.mlp.Layer
The output vector.
output() - Method in class smile.base.mlp.Layer
Returns the output vector.
output - Variable in class smile.base.mlp.MultilayerPerceptron
The output layer.
OutputFunction - Enum in smile.base.mlp
The output function of neural networks.
OutputLayer - Class in smile.base.mlp
The output layer in the neural network.
OutputLayer(int, int, OutputFunction, Cost) - Constructor for class smile.base.mlp.OutputLayer
Constructor.

P

p - Variable in class smile.base.mlp.Layer
The number of input variables.
p - Variable in class smile.base.mlp.MultilayerPerceptron
The dimensionality of input data.
p(int[], int[]) - Method in class smile.sequence.HMM
Returns the joint probability of an observation sequence along a state sequence given this HMM.
p(int[]) - Method in class smile.sequence.HMM
Returns the probability of an observation sequence given this HMM.
p(T[], int[]) - Method in class smile.sequence.HMMLabeler
Returns the joint probability of an observation sequence along a state sequence.
p(T[]) - Method in class smile.sequence.HMMLabeler
Returns the probability of an observation sequence.
partition(int) - Method in class smile.clustering.HierarchicalClustering
Cuts a tree into several groups by specifying the desired number.
partition(double) - Method in class smile.clustering.HierarchicalClustering
Cuts a tree into several groups by specifying the cut height.
PartitionClustering - Class in smile.clustering
Partition clustering.
PartitionClustering(int, int[]) - Constructor for class smile.clustering.PartitionClustering
Constructor.
PCA - Class in smile.projection
Principal component analysis.
PCA(double[], double[], DenseMatrix) - Constructor for class smile.projection.PCA
Constructor.
PlattScaling - Class in smile.classification
Platt scaling or Platt calibration is a way of transforming the outputs of a classification model into a probability distribution over classes.
PlattScaling(double, double) - Constructor for class smile.classification.PlattScaling
Constructor.
points() - Method in class smile.neighbor.lsh.Bucket
Returns the points in the bucket.
population() - Method in class smile.gap.GeneticAlgorithm
Returns the population of current generation.
posteriori(double[]) - Method in class smile.base.cart.DecisionNode
Returns the class probability.
posteriori(int[], double[]) - Static method in class smile.base.cart.DecisionNode
Returns the class probability.
PosterioriModel - Class in smile.neighbor.lsh
Pre-computed posteriori probabilities for generating multiple probes.
PosterioriModel(MultiProbeHash, MultiProbeSample[], int, double) - Constructor for class smile.neighbor.lsh.PosterioriModel
Constructor.
PPCA - Class in smile.projection
Probabilistic principal component analysis.
PPCA(double, double[], DenseMatrix, DenseMatrix) - Constructor for class smile.projection.PPCA
Constructor.
pr - Variable in class smile.neighbor.lsh.PrH
The probability
Precision - Class in smile.validation
The precision or positive predictive value (PPV) is ratio of true positives to combined true and false positives, which is different from sensitivity.
Precision() - Constructor for class smile.validation.Precision
 
predicate() - Method in class smile.base.cart.NominalSplit
 
predicate() - Method in class smile.base.cart.OrdinalSplit
 
predicate() - Method in class smile.base.cart.Split
Returns the lambda that tests on the split feature.
predict(Tuple) - Method in class smile.base.cart.InternalNode
Evaluates the tree over an instance.
predict(Tuple) - Method in class smile.base.cart.LeafNode
 
predict(Tuple) - Method in interface smile.base.cart.Node
Evaluate the tree over an instance.
predict(Tuple) - Method in class smile.base.cart.NominalNode
 
predict(Tuple) - Method in class smile.base.cart.OrdinalNode
 
predict(Tuple) - Method in class smile.classification.AdaBoost
 
predict(Tuple, double[]) - Method in class smile.classification.AdaBoost
Predicts the class label of an instance and also calculate a posteriori probabilities.
predict(T) - Method in interface smile.classification.Classifier
Predicts the class label of an instance.
predict(T[]) - Method in interface smile.classification.Classifier
Predicts the class labels of an array of instances.
predict(Tuple) - Method in interface smile.classification.DataFrameClassifier
Predicts the class label of an instance.
predict(DataFrame) - Method in interface smile.classification.DataFrameClassifier
Predicts the class labels of a data frame.
predict(Tuple) - Method in class smile.classification.DecisionTree
 
predict(Tuple, double[]) - Method in class smile.classification.DecisionTree
Predicts the class label of an instance and also calculate a posteriori probabilities.
predict(int[]) - Method in class smile.classification.DiscreteNaiveBayes
Predict the class of an instance.
predict(int[], double[]) - Method in class smile.classification.DiscreteNaiveBayes
Predict the class of an instance.
predict(SparseArray) - Method in class smile.classification.DiscreteNaiveBayes
Predict the class of an instance.
predict(SparseArray, double[]) - Method in class smile.classification.DiscreteNaiveBayes
Predict the class of an instance.
predict(double[]) - Method in class smile.classification.FLD
 
predict(Tuple) - Method in class smile.classification.GradientTreeBoost
 
predict(Tuple, double[]) - Method in class smile.classification.GradientTreeBoost
 
predict(double) - Method in class smile.classification.IsotonicRegressionScaling
Returns the posterior probability estimate P(y = 1 | x).
predict(T) - Method in class smile.classification.KNN
 
predict(T, double[]) - Method in class smile.classification.KNN
 
predict(double[]) - Method in class smile.classification.LDA
 
predict(double[], double[]) - Method in class smile.classification.LDA
 
predict(double[]) - Method in class smile.classification.LogisticRegression
 
predict(double[], double[]) - Method in class smile.classification.LogisticRegression
 
predict(int[]) - Method in class smile.classification.Maxent
 
predict(int[], double[]) - Method in class smile.classification.Maxent
 
predict(double[], double[]) - Method in class smile.classification.MLP
 
predict(double[]) - Method in class smile.classification.MLP
 
predict(double[]) - Method in class smile.classification.NaiveBayes
Predict the class of an instance.
predict(double[], double[]) - Method in class smile.classification.NaiveBayes
Predict the class of an instance.
predict(T) - Method in class smile.classification.OneVersusOne
Prediction is based on voting.
predict(T, double[]) - Method in class smile.classification.OneVersusOne
Prediction is based posteriori probability estimation.
predict(T) - Method in class smile.classification.OneVersusRest
 
predict(T, double[]) - Method in class smile.classification.OneVersusRest
 
predict(double[]) - Method in class smile.classification.QDA
 
predict(double[], double[]) - Method in class smile.classification.QDA
 
predict(Tuple) - Method in class smile.classification.RandomForest
 
predict(Tuple, double[]) - Method in class smile.classification.RandomForest
 
predict(T) - Method in class smile.classification.RBFNetwork
 
predict(T, double[]) - Method in interface smile.classification.SoftClassifier
Predicts the class label of an instance and also calculate a posteriori probabilities.
predict(T) - Method in class smile.classification.SVM
 
predict(U) - Method in class smile.clustering.CentroidClustering
Classifies a new observation.
predict(T) - Method in class smile.clustering.DBSCAN
Classifies a new observation.
predict(double[]) - Method in class smile.clustering.DENCLUE
Classifies a new observation.
predict(T) - Method in class smile.clustering.MEC
Cluster a new instance.
predict(Tuple) - Method in interface smile.regression.DataFrameRegression
Predicts the dependent variable of a tuple instance.
predict(DataFrame) - Method in interface smile.regression.DataFrameRegression
Predicts the dependent variables of a data frame.
predict(Tuple) - Method in class smile.regression.GradientTreeBoost
 
predict(T) - Method in class smile.regression.KernelMachine
 
predict(double[]) - Method in class smile.regression.LinearModel
 
predict(Tuple) - Method in class smile.regression.LinearModel
 
predict(DataFrame) - Method in class smile.regression.LinearModel
 
predict(double[]) - Method in class smile.regression.MLP
 
predict(Tuple) - Method in class smile.regression.RandomForest
 
predict(T) - Method in class smile.regression.RBFNetwork
 
predict(T) - Method in interface smile.regression.Regression
Predicts the dependent variable of an instance.
predict(T[]) - Method in interface smile.regression.Regression
Predicts the dependent variables of an array of instances.
predict(Tuple) - Method in class smile.regression.RegressionTree
 
predict(Tuple[]) - Method in class smile.sequence.CRF
Returns the most likely label sequence given the feature sequence by the forward-backward algorithm.
predict(T[]) - Method in class smile.sequence.CRFLabeler
Returns the most likely label sequence given the feature sequence by the forward-backward algorithm.
predict(int[]) - Method in class smile.sequence.HMM
Returns the most likely state sequence given the observation sequence by the Viterbi algorithm, which maximizes the probability of P(I | O, HMM).
predict(T[]) - Method in class smile.sequence.HMMLabeler
Returns the most likely state sequence given the observation sequence by the Viterbi algorithm, which maximizes the probability of P(I | O, HMM).
predict(T[]) - Method in interface smile.sequence.SequenceLabeler
Predicts the sequence labels.
predictors(Tuple) - Method in class smile.base.cart.CART
Returns the predictors by the model formula if it is not null.
PrH - Class in smile.neighbor.lsh
Probability for given query object and hash function.
PrH(int, double) - Constructor for class smile.neighbor.lsh.PrH
Constructor.
prh - Variable in class smile.neighbor.lsh.PrZ
The n_i probabilities for h_m hash function, where n_i = u_i_max - u_i_min + 1.
priori - Variable in class smile.classification.ClassLabels
The estimated priori probabilities.
priori() - Method in class smile.classification.DiscreteNaiveBayes
Returns a priori probabilities.
priori() - Method in class smile.classification.LDA
Returns a priori probabilities.
priori() - Method in class smile.classification.NaiveBayes
Returns a priori probabilities.
priori() - Method in class smile.classification.QDA
Returns a priori probabilities.
Probe - Class in smile.neighbor.lsh
Probe to check for nearest neighbors.
Probe(int[]) - Constructor for class smile.neighbor.lsh.Probe
Constructor.
project(double[]) - Method in class smile.classification.FLD
 
project(double[][]) - Method in class smile.classification.FLD
 
project(T) - Method in class smile.projection.KPCA
 
project(T[]) - Method in class smile.projection.KPCA
 
project(double[]) - Method in interface smile.projection.LinearProjection
 
project(double[][]) - Method in interface smile.projection.LinearProjection
 
project(double[]) - Method in class smile.projection.PCA
 
project(double[][]) - Method in class smile.projection.PCA
 
project(double[]) - Method in class smile.projection.PPCA
 
project(double[][]) - Method in class smile.projection.PPCA
 
project(T) - Method in interface smile.projection.Projection
Project a data point to the feature space.
project(T[]) - Method in interface smile.projection.Projection
Project a set of data to the feature space.
Projection<T> - Interface in smile.projection
A projection is a kind of feature extraction technique that transforms data from the input space to a feature space, linearly or nonlinearly.
propagate(double[]) - Method in class smile.base.mlp.Layer
Propagates signals from a lower layer to this layer.
propagate(double[]) - Method in class smile.base.mlp.MultilayerPerceptron
Propagates the signals through the neural network.
proportion - Variable in class smile.mds.MDS
The proportion of variance contained in each principal component.
proximity(double[][]) - Static method in class smile.clustering.linkage.Linkage
Calculate the proximity matrix (linearized in column major) with Euclidean distance.
proximity(T[], Distance<T>) - Static method in class smile.clustering.linkage.Linkage
Calculate the proximity matrix (linearized in column major).
prune(DataFrame) - Method in class smile.classification.DecisionTree
Returns a new decision tree by reduced error pruning.
prune(DataFrame) - Method in class smile.classification.RandomForest
Returns a new random forest by reduced error pruning.
PrZ - Class in smile.neighbor.lsh
Probability list of all buckets for given query object.
PrZ(int, PrH[]) - Constructor for class smile.neighbor.lsh.PrZ
Constructor.
put(double[], E) - Method in class smile.neighbor.LSH
Insert an item into the hash table.
put(double[], E) - Method in class smile.neighbor.MutableLSH
 
put(K, V) - Method in class smile.neighbor.SNLSH
Adds a new item.
pvalue() - Method in class smile.regression.LinearModel
Returns the p-value of goodness-of-fit test.

Q

QDA - Class in smile.classification
Quadratic discriminant analysis.
QDA(double[], double[][], double[][], DenseMatrix[]) - Constructor for class smile.classification.QDA
Constructor.
QDA(double[], double[][], double[][], DenseMatrix[], IntSet) - Constructor for class smile.classification.QDA
Constructor.
quantile(double) - Static method in interface smile.base.cart.Loss
Quantile regression.
quantize(double[]) - Method in class smile.vq.BIRCH
 
quantize(double[]) - Method in class smile.vq.GrowingNeuralGas
 
quantize(double[]) - Method in class smile.vq.NeuralGas
 
quantize(double[]) - Method in class smile.vq.NeuralMap
 
quantize(double[]) - Method in class smile.vq.SOM
 
quantize(double[]) - Method in interface smile.vq.VectorQuantizer
Quantize a new observation.
query - Variable in class smile.neighbor.lsh.MultiProbeSample
The query object.

R

radius - Variable in class smile.clustering.DBSCAN
The neighborhood radius.
radius - Variable in class smile.clustering.MEC
The range of neighborhood.
RandIndex - Class in smile.validation
Rand Index.
RandIndex() - Constructor for class smile.validation.RandIndex
 
random(int, double) - Static method in class smile.sampling.Bagging
Random sampling.
RandomForest - Class in smile.classification
Random forest for classification.
RandomForest(Formula, int, List<RandomForest.Tree>, double, double[]) - Constructor for class smile.classification.RandomForest
Constructor.
RandomForest(Formula, int, List<RandomForest.Tree>, double, double[], IntSet) - Constructor for class smile.classification.RandomForest
Constructor.
RandomForest - Class in smile.regression
Random forest for regression.
RandomForest(Formula, RegressionTree[], double, double[]) - Constructor for class smile.regression.RandomForest
Constructor.
RandomProjection - Class in smile.projection
Random projection is a promising dimensionality reduction technique for learning mixtures of Gaussians.
RandomProjection(DenseMatrix) - Constructor for class smile.projection.RandomProjection
Constructor.
range(E, double, List<Neighbor<E, E>>) - Method in class smile.neighbor.BKTree
 
range(E, int, List<Neighbor<E, E>>) - Method in class smile.neighbor.BKTree
Search the neighbors in the given radius of query object, i.e.
range(E, double, List<Neighbor<E, E>>) - Method in class smile.neighbor.CoverTree
 
range(double[], double, List<Neighbor<double[], E>>) - Method in class smile.neighbor.KDTree
 
range(T, double, List<Neighbor<T, T>>) - Method in class smile.neighbor.LinearSearch
 
range(double[], double, List<Neighbor<double[], E>>) - Method in class smile.neighbor.LSH
 
range(double[], double, List<Neighbor<double[], E>>) - Method in class smile.neighbor.MPLSH
 
range(double[], double, List<Neighbor<double[], E>>, double, int) - Method in class smile.neighbor.MPLSH
Search the neighbors in the given radius of query object, i.e.
range(K, double, List<Neighbor<K, V>>) - Method in interface smile.neighbor.RNNSearch
Search the neighbors in the given radius of query object, i.e.
range(K, double, List<Neighbor<K, V>>) - Method in class smile.neighbor.SNLSH
 
rank(double[][], int[]) - Method in interface smile.feature.FeatureRanking
Univariate feature ranking.
rank(double[][], int[]) - Method in class smile.feature.SignalNoiseRatio
 
rank(double[][], int[]) - Method in class smile.feature.SumSquaresRatio
 
Rank() - Static method in interface smile.gap.Selection
Rank Selection.
RBF<T> - Class in smile.base.rbf
A neuron in radial basis function network.
RBF(T, RadialBasisFunction, Metric<T>) - Constructor for class smile.base.rbf.RBF
Constructor.
RBFNetwork<T> - Class in smile.classification
Radial basis function networks.
RBFNetwork(int, RBF<T>[], DenseMatrix, boolean) - Constructor for class smile.classification.RBFNetwork
Constructor.
RBFNetwork(int, RBF<T>[], DenseMatrix, boolean, IntSet) - Constructor for class smile.classification.RBFNetwork
Constructor.
RBFNetwork<T> - Class in smile.regression
Radial basis function network.
RBFNetwork(RBF<T>[], double[], boolean) - Constructor for class smile.regression.RBFNetwork
Constructor.
RDA - Class in smile.classification
Regularized discriminant analysis.
RDA(double[], double[][], double[][], DenseMatrix[]) - Constructor for class smile.classification.RDA
Constructor.
RDA(double[], double[][], double[][], DenseMatrix[], IntSet) - Constructor for class smile.classification.RDA
Constructor.
Recall - Class in smile.validation
In information retrieval area, sensitivity is called recall.
Recall() - Constructor for class smile.validation.Recall
 
rectifier() - Static method in interface smile.base.mlp.ActivationFunction
The rectifier activation function max(0, x).
rectifier(int) - Static method in class smile.base.mlp.Layer
Returns a hidden layer with rectified linear activation function.
Regression<T> - Interface in smile.regression
Regression analysis includes any techniques for modeling and analyzing the relationship between a dependent variable and one or more independent variables.
regression(T[], double[], BiFunction<T[], double[], Regression<T>>) - Method in class smile.validation.Bootstrap
Runs bootstrap tests.
regression(Formula, DataFrame, BiFunction<Formula, DataFrame, DataFrameRegression>) - Method in class smile.validation.Bootstrap
Runs bootstrap tests.
regression(int, T[], double[], BiFunction<T[], double[], Regression<T>>) - Static method in class smile.validation.Bootstrap
Runs bootstrap tests.
regression(int, Formula, DataFrame, BiFunction<Formula, DataFrame, DataFrameRegression>) - Static method in class smile.validation.Bootstrap
Runs bootstrap tests.
regression(T[], double[], BiFunction<T[], double[], Regression<T>>) - Method in class smile.validation.CrossValidation
Runs cross validation tests.
regression(Formula, DataFrame, BiFunction<Formula, DataFrame, DataFrameRegression>) - Method in class smile.validation.CrossValidation
Runs cross validation tests.
regression(int, T[], double[], BiFunction<T[], double[], Regression<T>>) - Static method in class smile.validation.CrossValidation
Runs cross validation tests.
regression(int, Formula, DataFrame, BiFunction<Formula, DataFrame, DataFrameRegression>) - Static method in class smile.validation.CrossValidation
Runs cross validation tests.
regression(T[], double[], BiFunction<T[], double[], Regression<T>>) - Method in class smile.validation.GroupKFold
Runs cross validation tests.
regression(DataFrame, Function<DataFrame, DataFrameRegression>) - Method in class smile.validation.GroupKFold
Runs cross validation tests.
regression(T[], double[], BiFunction<T[], double[], Regression<T>>) - Static method in class smile.validation.LOOCV
Runs leave-one-out cross validation tests.
regression(Formula, DataFrame, BiFunction<Formula, DataFrame, DataFrameRegression>) - Static method in class smile.validation.LOOCV
Runs leave-one-out cross validation tests.
RegressionMeasure - Interface in smile.validation
An abstract interface to measure the regression performance.
RegressionNode - Class in smile.base.cart
A leaf node in regression tree.
RegressionNode(int, double, double, double) - Constructor for class smile.base.cart.RegressionNode
Constructor.
RegressionTree - Class in smile.regression
Decision tree for regression.
RegressionTree(DataFrame, Loss, StructField, int, int, int, int, int[], int[][]) - Constructor for class smile.regression.RegressionTree
Constructor.
remove(int) - Method in class smile.neighbor.lsh.Bucket
Removes a point from bucket.
remove(double[], E) - Method in class smile.neighbor.MutableLSH
Remove an entry from the hash table.
removeChild(Concept) - Method in class smile.taxonomy.Concept
Remove a child to this node
removeEdge(Neuron) - Method in class smile.vq.hebb.Neuron
Removes an edge.
removeKeyword(String) - Method in class smile.taxonomy.Concept
Remove a keyword from the concept synset.
replace(Node, Node) - Method in class smile.base.cart.InternalNode
Returns a new internal node with children replaced.
replace(Node, Node) - Method in class smile.base.cart.NominalNode
 
replace(Node, Node) - Method in class smile.base.cart.OrdinalNode
 
residual() - Method in interface smile.base.cart.Loss
Returns the residual vector.
residuals() - Method in class smile.regression.LinearModel
Returns the residuals, that is response minus fitted values.
response - Variable in class smile.base.cart.CART
The schema of response variable.
response() - Method in interface smile.base.cart.Loss
Returns the response variable for next iteration.
RidgeRegression - Class in smile.regression
Ridge Regression.
RidgeRegression() - Constructor for class smile.regression.RidgeRegression
 
RMSE - Class in smile.validation
Root mean squared error.
RMSE() - Constructor for class smile.validation.RMSE
 
RNNSearch<K,V> - Interface in smile.neighbor
A range nearest neighbor search retrieves the nearest neighbors to a query in a range.
RobustStandardizer - Class in smile.feature
Robustly standardizes numeric feature by subtracting the median and dividing by the IQR.
RobustStandardizer(StructType, double[], double[]) - Constructor for class smile.feature.RobustStandardizer
Constructor.
root - Variable in class smile.base.cart.CART
The root of decision tree.
root() - Method in class smile.base.cart.CART
Returs the root node.
RouletteWheel() - Static method in interface smile.gap.Selection
Roulette Wheel Selection, also called fitness proportionate selection.
RSquared() - Method in class smile.regression.LinearModel
Returns R2 statistic.
RSS() - Method in class smile.regression.LinearModel
Returns the residual sum of squares.
RSS - Class in smile.validation
Residual sum of squares.
RSS() - Constructor for class smile.validation.RSS
 
run(int, Supplier<T>) - Static method in class smile.clustering.PartitionClustering
Runs a clustering algorithm multiple times and return the best one (e.g.

S

SammonMapping - Class in smile.mds
The Sammon's mapping is an iterative technique for making interpoint distances in the low-dimensional projection as close as possible to the interpoint distances in the high-dimensional object.
SammonMapping(double, double[][]) - Constructor for class smile.mds.SammonMapping
Constructor.
samples - Variable in class smile.base.cart.CART
The samples for training this node.
samples - Variable in class smile.sampling.Bagging
The samples.
scale() - Method in class smile.classification.ClassLabels
Returns the nominal scale for the class labels.
scale(double) - Method in class smile.classification.PlattScaling
Returns the posterior probability estimate P(y = 1 | x).
ScaledRouletteWheel() - Static method in interface smile.gap.Selection
Scaled Roulette Wheel Selection.
Scaler - Class in smile.feature
Scales all numeric variables into the range [0, 1].
Scaler(StructType, double[], double[]) - Constructor for class smile.feature.Scaler
Constructor.
schema - Variable in class smile.base.cart.CART
The schema of data.
schema() - Method in class smile.classification.AdaBoost
 
schema() - Method in interface smile.classification.DataFrameClassifier
Returns the design matrix schema.
schema() - Method in class smile.classification.DecisionTree
 
schema() - Method in class smile.classification.GradientTreeBoost
 
schema() - Method in class smile.classification.RandomForest
 
schema - Variable in class smile.feature.MaxAbsScaler
The schema of data.
schema() - Method in interface smile.regression.DataFrameRegression
Returns the design matrix schema.
schema() - Method in class smile.regression.GradientTreeBoost
 
schema() - Method in class smile.regression.LinearModel
 
schema() - Method in class smile.regression.RandomForest
 
schema() - Method in class smile.regression.RegressionTree
 
score() - Method in class smile.base.cart.InternalNode
Returns the split score (reduction of impurity).
scores - Variable in class smile.mds.MDS
The component scores.
sd() - Method in class smile.neighbor.lsh.HashValueParzenModel
Returns the standard deviation.
seed(T[], T[], int[], ToDoubleBiFunction<T, T>) - Static method in class smile.clustering.PartitionClustering
Initialize cluster membership of input objects with K-Means++ algorithm.
seed(int, double[][]) - Static method in class smile.vq.NeuralGas
Selects random samples as initial neurons of Neural Gas.
Selection - Interface in smile.gap
The way to select chromosomes from the population as parents to crossover.
Sensitivity - Class in smile.validation
Sensitivity or true positive rate (TPR) (also called hit rate, recall) is a statistical measures of the performance of a binary classification test.
Sensitivity() - Constructor for class smile.validation.Sensitivity
 
SequenceLabeler<T> - Interface in smile.sequence
A sequence labeler assigns a class label to each position of the sequence.
setEdgeAge(Neuron, int) - Method in class smile.vq.hebb.Neuron
Sets the age of edge.
setLearningRate(double) - Method in class smile.base.mlp.MultilayerPerceptron
Sets the learning rate.
setLearningRate(double) - Method in class smile.classification.LogisticRegression
Sets the learning rate of stochastic gradient descent.
setLearningRate(double) - Method in class smile.classification.Maxent
Sets the learning rate of stochastic gradient descent.
setLearningRate(double) - Method in class smile.projection.GHA
Set the learning rate.
setLocalSearchSteps(int) - Method in class smile.gap.GeneticAlgorithm
Sets the number of iterations of local search for Lamarckian algorithm.
setMomentum(double) - Method in class smile.base.mlp.MultilayerPerceptron
Sets the momentum factor.
setProb(PrZ[]) - Method in class smile.neighbor.lsh.Probe
Calculate the probability of the probe.
setProjection(int) - Method in class smile.projection.PCA
Set the projection matrix with given number of principal components.
setProjection(double) - Method in class smile.projection.PCA
Set the projection matrix with top principal components that contain (more than) the given percentage of variance.
setWeightDecay(double) - Method in class smile.base.mlp.MultilayerPerceptron
Sets the weight decay factor.
shift() - Method in class smile.neighbor.lsh.Probe
This operation shifts to the right the last nonzero component if it is equal to one and if it is not the last one.
SIB - Class in smile.clustering
The Sequential Information Bottleneck algorithm.
SIB(double, double[][], int[]) - Constructor for class smile.clustering.SIB
Constructor.
sigmoid() - Static method in interface smile.base.mlp.ActivationFunction
Logistic sigmoid function: sigmoid(v)=1/(1+exp(-v)).
sigmoid(int) - Static method in class smile.base.mlp.Layer
Returns a hidden layer with sigmoid activation function.
SignalNoiseRatio - Class in smile.feature
The signal-to-noise (S2N) metric ratio is a univariate feature ranking metric, which can be used as a feature selection criterion for binary classification problems.
SignalNoiseRatio() - Constructor for class smile.feature.SignalNoiseRatio
 
SimHash<T> - Interface in smile.neighbor.lsh
SimHash is a technique for quickly estimating how similar two sets are.
SingleLinkage - Class in smile.clustering.linkage
Single linkage.
SingleLinkage(double[][]) - Constructor for class smile.clustering.linkage.SingleLinkage
Constructor.
SingleLinkage(int, float[]) - Constructor for class smile.clustering.linkage.SingleLinkage
Constructor.
size() - Method in class smile.association.FPGrowth
Returns the number transactions in the database.
size() - Method in class smile.association.FPTree
Returns the number transactions in the database.
size() - Method in class smile.base.cart.CART
Returns the number of nodes in the tree.
size() - Method in class smile.base.cart.InternalNode
 
size - Variable in class smile.base.cart.LeafNode
The number of samples in the node.
size() - Method in class smile.base.cart.LeafNode
 
size() - Method in interface smile.base.cart.Node
Returns the number of samples in the node.
size() - Method in class smile.classification.AdaBoost
Returns the number of trees in the model.
size() - Method in class smile.classification.GradientTreeBoost
Returns the number of trees in the model.
size() - Method in class smile.classification.RandomForest
Returns the number of trees in the model.
size() - Method in class smile.clustering.linkage.Linkage
Returns the proximity matrix size.
size - Variable in class smile.clustering.PartitionClustering
The number of observations in each cluster.
size() - Method in class smile.regression.GradientTreeBoost
Returns the number of trees in the model.
size() - Method in class smile.regression.RandomForest
Returns the number of trees in the model.
smile.association - package smile.association
Frequent item set mining and association rule mining.
smile.base.cart - package smile.base.cart
 
smile.base.mlp - package smile.base.mlp
 
smile.base.rbf - package smile.base.rbf
 
smile.base.svm - package smile.base.svm
 
smile.classification - package smile.classification
Classification algorithms.
smile.clustering - package smile.clustering
Clustering analysis.
smile.clustering.linkage - package smile.clustering.linkage
Cluster dissimilarity measures.
smile.feature - package smile.feature
Feature generation, normalization and selection.
smile.gap - package smile.gap
Genetic algorithm and programming.
smile.imputation - package smile.imputation
Missing value imputation.
smile.manifold - package smile.manifold
Manifold learning finds a low-dimensional basis for describing high-dimensional data.
smile.mds - package smile.mds
Multidimensional scaling.
smile.neighbor - package smile.neighbor
Nearest neighbor search.
smile.neighbor.lsh - package smile.neighbor.lsh
 
smile.projection - package smile.projection
Feature extraction.
smile.projection.ica - package smile.projection.ica
 
smile.regression - package smile.regression
Regression analysis.
smile.sampling - package smile.sampling
Sampling is concerned with the selection of a subset of individuals from within a statistical population to estimate characteristics of the whole population.
smile.sequence - package smile.sequence
Learning algorithms for sequence data.
smile.taxonomy - package smile.taxonomy
A taxonomy is a tree of terms (concepts) where leaves must be named but intermediary nodes can be anonymous.
smile.validation - package smile.validation
Model validation.
smile.vq - package smile.vq
Vector quantization is a lossy compression technique used in speech and image coding.
smile.vq.hebb - package smile.vq.hebb
Hebbian theory is a neuroscientific theory claiming that an increase in synaptic efficacy arises from a presynaptic cell's repeated and persistent stimulation of a postsynaptic cell.
smile.wavelet - package smile.wavelet
Discrete wavelet transform (DWT).
SNLSH<K,V> - Class in smile.neighbor
Locality-Sensitive Hashing for Signatures.
SNLSH(int, SimHash<K>) - Constructor for class smile.neighbor.SNLSH
Constructor.
SoftClassifier<T> - Interface in smile.classification
Soft classifiers calculate a posteriori probabilities besides the class label of an instance.
SOM - Class in smile.vq
Self-Organizing Map.
SOM(double[][][], TimeFunction, Neighborhood) - Constructor for class smile.vq.SOM
Constructor.
sparse(int, KernelMachine<SparseArray>) - Static method in class smile.base.svm.LinearKernelMachine
Creates a linear kernel machine.
sparse(int, int) - Static method in class smile.projection.RandomProjection
Generates a sparse random projection.
SparseOneHotEncoder - Class in smile.feature
Encode categorical integer features using sparse one-hot scheme.
SparseOneHotEncoder(StructType) - Constructor for class smile.feature.SparseOneHotEncoder
Constructor.
Specificity - Class in smile.validation
Specificity (SPC) or True Negative Rate is a statistical measures of the performance of a binary classification test.
Specificity() - Constructor for class smile.validation.Specificity
 
SpectralClustering - Class in smile.clustering
Spectral Clustering.
SpectralClustering(double, int, int[]) - Constructor for class smile.clustering.SpectralClustering
Constructor.
split(Split, PriorityQueue<Split>) - Method in class smile.base.cart.CART
Split a node into two children nodes.
Split - Class in smile.base.cart
The data about of a potential split for a leaf node.
Split(LeafNode, int, double, int, int, int, int) - Constructor for class smile.base.cart.Split
Constructor.
SplitRule - Enum in smile.base.cart
The criterion to choose variable to split instances.
sqrt(int[], int[]) - Static method in class smile.validation.AdjustedMutualInformation
Calculates the adjusted mutual information of (I(y1, y2) - E(MI)) / (sqrt(H(y1) * H(y2)) - E(MI)).
sqrt(int[], int[]) - Static method in class smile.validation.NormalizedMutualInformation
Calculates the normalized mutual information of I(y1, y2) / sqrt(H(y1) * H(y2)).
Standardizer - Class in smile.feature
Standardizes numeric feature to 0 mean and unit variance.
Standardizer(StructType, double[], double[]) - Constructor for class smile.feature.Standardizer
Constructor.
strateify(int[], double) - Static method in class smile.sampling.Bagging
Stratified sampling.
stress - Variable in class smile.mds.IsotonicMDS
The final stress achieved.
stress - Variable in class smile.mds.SammonMapping
The final stress achieved.
sum(int[], int[]) - Static method in class smile.validation.AdjustedMutualInformation
Calculates the adjusted mutual information of (I(y1, y2) - E(MI)) / (0.5 * (H(y1) + H(y2)) - E(MI)).
sum(int[], int[]) - Static method in class smile.validation.NormalizedMutualInformation
Calculates the normalized mutual information of 2 * I(y1, y2) / (H(y1) + H(y2)).
SumSquaresRatio - Class in smile.feature
The ratio of between-groups to within-groups sum of squares is a univariate feature ranking metric, which can be used as a feature selection criterion for multi-class classification problems.
SumSquaresRatio() - Constructor for class smile.feature.SumSquaresRatio
 
support - Variable in class smile.association.AssociationRule
The support value.
support - Variable in class smile.association.ItemSet
The associated support of item set.
SupportVector<T> - Class in smile.base.svm
Support vector.
SupportVector(int, T, int, double, double, double, double, double) - Constructor for class smile.base.svm.SupportVector
 
SVDImputation - Class in smile.imputation
Missing value imputation with singular value decomposition.
SVDImputation(int) - Constructor for class smile.imputation.SVDImputation
Constructor.
SVM<T> - Class in smile.classification
Support vector machines for classification.
SVM(MercerKernel<T>, T[], double[], double) - Constructor for class smile.classification.SVM
Constructor.
SVR<T> - Class in smile.base.svm
Epsilon support vector regression.
SVR(MercerKernel<T>, double, double, double) - Constructor for class smile.base.svm.SVR
Constructor.
SVR - Class in smile.regression
Epsilon support vector regression.
SVR() - Constructor for class smile.regression.SVR
 
SymletWavelet - Class in smile.wavelet
Symlet wavelets.
SymletWavelet(int) - Constructor for class smile.wavelet.SymletWavelet
Constructor.

T

T - Variable in class smile.vq.BIRCH
THe maximum radius of a sub-cluster.
tanh() - Static method in interface smile.base.mlp.ActivationFunction
Hyperbolic tangent activation function.
tanh(int) - Static method in class smile.base.mlp.Layer
Returns a hidden layer with hyperbolic tangent activation function.
target - Variable in class smile.base.mlp.MultilayerPerceptron
The buffer to store desired target value of training instance.
TaxonomicDistance - Class in smile.taxonomy
The distance between concepts in a taxonomy.
TaxonomicDistance(Taxonomy) - Constructor for class smile.taxonomy.TaxonomicDistance
Constructor.
Taxonomy - Class in smile.taxonomy
A taxonomy is a tree of terms (aka concept) where leaves must be named but intermediary nodes can be anonymous.
Taxonomy(String...) - Constructor for class smile.taxonomy.Taxonomy
Constructor.
test(DataFrame) - Method in class smile.classification.AdaBoost
Test the model on a validation dataset.
test(DataFrame) - Method in class smile.classification.GradientTreeBoost
Test the model on a validation dataset.
test(DataFrame) - Method in class smile.classification.RandomForest
Test the model on a validation dataset.
test(DataFrame) - Method in class smile.regression.GradientTreeBoost
Test the model on a validation dataset.
test(DataFrame) - Method in class smile.regression.RandomForest
Test the model on a validation dataset.
test - Variable in class smile.validation.Bootstrap
The index of testing instances.
test - Variable in class smile.validation.CrossValidation
The index of testing instances.
test - Variable in class smile.validation.GroupKFold
The index of testing instances.
test - Variable in class smile.validation.LOOCV
The index of testing instances.
test(Classifier<T>, T[]) - Static method in interface smile.validation.Validation
Tests a classifier on a validation set.
test(DataFrameClassifier, DataFrame) - Static method in interface smile.validation.Validation
Tests a regression model on a validation set.
test(Regression<T>, T[]) - Static method in interface smile.validation.Validation
Tests a regression model on a validation set.
test(DataFrameRegression, DataFrame) - Static method in interface smile.validation.Validation
Tests a regression model on a validation set.
text() - Static method in interface smile.neighbor.lsh.SimHash
Returns the simhash for string tokens.
toNode(Node, Node) - Method in class smile.base.cart.NominalSplit
 
toNode(Node, Node) - Method in class smile.base.cart.OrdinalSplit
 
toNode(Node, Node) - Method in class smile.base.cart.Split
Returns an internal node with the feature, value, and score of this split.
toString() - Method in class smile.association.AssociationRule
 
toString() - Method in class smile.association.ItemSet
 
toString() - Method in class smile.base.cart.CART
Returns a text representation of the tree in R's rpart format.
toString(StructType, StructField, InternalNode, int, BigInteger, List<String>) - Method in class smile.base.cart.DecisionNode
 
toString(StructType, boolean) - Method in class smile.base.cart.InternalNode
Returns the string representation of branch.
toString(StructType, StructField, InternalNode, int, BigInteger, List<String>) - Method in class smile.base.cart.InternalNode
 
toString(StructType, StructField, InternalNode, int, BigInteger, List<String>) - Method in interface smile.base.cart.Node
Adds the string representation (R's rpart format) to a collection.
toString(StructType, boolean) - Method in class smile.base.cart.NominalNode
 
toString(StructType, boolean) - Method in class smile.base.cart.OrdinalNode
 
toString(StructType, StructField, InternalNode, int, BigInteger, List<String>) - Method in class smile.base.cart.RegressionNode
 
toString() - Method in class smile.base.cart.Split
 
toString() - Method in class smile.base.mlp.HiddenLayer
 
toString() - Method in class smile.base.mlp.MultilayerPerceptron
 
toString() - Method in class smile.base.mlp.OutputLayer
 
toString() - Method in class smile.base.svm.KernelMachine
 
toString() - Method in class smile.classification.IsotonicRegressionScaling
 
toString() - Method in class smile.clustering.CentroidClustering
 
toString() - Method in class smile.clustering.linkage.CompleteLinkage
 
toString() - Method in class smile.clustering.linkage.SingleLinkage
 
toString() - Method in class smile.clustering.linkage.UPGMALinkage
 
toString() - Method in class smile.clustering.linkage.UPGMCLinkage
 
toString() - Method in class smile.clustering.linkage.WardLinkage
 
toString() - Method in class smile.clustering.linkage.WPGMALinkage
 
toString() - Method in class smile.clustering.linkage.WPGMCLinkage
 
toString() - Method in class smile.clustering.MEC
 
toString() - Method in class smile.clustering.PartitionClustering
 
toString() - Method in class smile.feature.MaxAbsScaler
 
toString() - Method in class smile.feature.Normalizer
 
toString() - Method in class smile.feature.RobustStandardizer
 
toString() - Method in class smile.feature.Scaler
 
toString() - Method in class smile.feature.Standardizer
 
toString() - Method in class smile.feature.WinsorScaler
 
toString() - Method in class smile.gap.BitString
 
toString() - Method in class smile.neighbor.BKTree
 
toString() - Method in class smile.neighbor.CoverTree
 
toString() - Method in class smile.neighbor.KDTree
 
toString() - Method in class smile.neighbor.LinearSearch
 
toString() - Method in class smile.neighbor.LSH
 
toString() - Method in class smile.neighbor.MPLSH
 
toString() - Method in class smile.neighbor.Neighbor
 
toString() - Method in class smile.regression.LinearModel
 
toString() - Method in class smile.sampling.Bagging
 
toString() - Method in class smile.sequence.CRFLabeler
 
toString() - Method in class smile.sequence.HMM
 
toString() - Method in class smile.sequence.HMMLabeler
 
toString() - Method in class smile.taxonomy.Concept
 
toString() - Method in class smile.taxonomy.TaxonomicDistance
 
toString() - Method in class smile.validation.Accuracy
 
toString() - Method in class smile.validation.AdjustedMutualInformation
 
toString() - Method in class smile.validation.AdjustedRandIndex
 
toString() - Method in class smile.validation.ConfusionMatrix
 
toString() - Method in class smile.validation.Error
 
toString() - Method in class smile.validation.Fallout
 
toString() - Method in class smile.validation.FDR
 
toString() - Method in class smile.validation.MCC
 
toString() - Method in class smile.validation.MeanAbsoluteDeviation
 
toString() - Method in class smile.validation.MSE
 
toString() - Method in class smile.validation.MutualInformation
 
toString() - Method in class smile.validation.NormalizedMutualInformation
 
toString() - Method in class smile.validation.Precision
 
toString() - Method in class smile.validation.RandIndex
 
toString() - Method in class smile.validation.Recall
 
toString() - Method in class smile.validation.RMSE
 
toString() - Method in class smile.validation.RSS
 
toString() - Method in class smile.validation.Sensitivity
 
toString() - Method in class smile.validation.Specificity
 
toSVM() - Method in class smile.base.svm.KernelMachine
Convert the kernel machine to SVM instance.
Tournament(int, double) - Static method in interface smile.gap.Selection
Tournament Selection.
train - Variable in class smile.validation.Bootstrap
The index of training instances.
train - Variable in class smile.validation.CrossValidation
The index of training instances.
train - Variable in class smile.validation.GroupKFold
The index of training instances.
train - Variable in class smile.validation.LOOCV
The index of training instances.
transform(double[]) - Method in interface smile.feature.FeatureTransform
Transform a feature vector.
transform(double[][]) - Method in interface smile.feature.FeatureTransform
Transform a data frame.
transform(Tuple) - Method in interface smile.feature.FeatureTransform
Transform a feature vector.
transform(DataFrame) - Method in interface smile.feature.FeatureTransform
Transform a data frame.
transform(double[]) - Method in class smile.feature.MaxAbsScaler
 
transform(Tuple) - Method in class smile.feature.MaxAbsScaler
 
transform(DataFrame) - Method in class smile.feature.MaxAbsScaler
 
transform(double[]) - Method in class smile.feature.Normalizer
 
transform(Tuple) - Method in class smile.feature.Normalizer
 
transform(DataFrame) - Method in class smile.feature.Normalizer
 
transform(double[]) - Method in class smile.feature.Scaler
 
transform(Tuple) - Method in class smile.feature.Scaler
 
transform(DataFrame) - Method in class smile.feature.Scaler
 
transform(double[]) - Method in class smile.feature.Standardizer
 
transform(Tuple) - Method in class smile.feature.Standardizer
 
transform(DataFrame) - Method in class smile.feature.Standardizer
 
transform(double[]) - Method in class smile.wavelet.Wavelet
Discrete wavelet transform.
trees() - Method in class smile.classification.AdaBoost
Returns the decision trees.
trees() - Method in class smile.classification.GradientTreeBoost
Returns the regression trees.
trees() - Method in class smile.classification.RandomForest
Returns the decision trees.
trees() - Method in class smile.regression.GradientTreeBoost
Returns the regression trees.
trees() - Method in class smile.regression.RandomForest
Returns the regression trees.
trim(int) - Method in class smile.classification.AdaBoost
Trims the tree model set to a smaller size in case of over-fitting.
trim(int) - Method in class smile.classification.GradientTreeBoost
Trims the tree model set to a smaller size in case of over-fitting.
trim(int) - Method in class smile.classification.RandomForest
Trims the tree model set to a smaller size in case of over-fitting.
trim(int) - Method in class smile.regression.GradientTreeBoost
Trims the tree model set to a smaller size in case of over-fitting.
trim(int) - Method in class smile.regression.RandomForest
Trims the tree model set to a smaller size in case of over-fitting.
trueChild() - Method in class smile.base.cart.InternalNode
Returns the true branch child.
TSNE - Class in smile.manifold
The t-distributed stochastic neighbor embedding (t-SNE) is a nonlinear dimensionality reduction technique that is particularly well suited for embedding high-dimensional data into a space of two or three dimensions, which can then be visualized in a scatter plot.
TSNE(double[][], int) - Constructor for class smile.manifold.TSNE
Constructor.
TSNE(double[][], int, double, double, int) - Constructor for class smile.manifold.TSNE
Constructor.
ttest() - Method in class smile.regression.LinearModel
Returns the t-test of the coefficients (including intercept).

U

u - Variable in class smile.neighbor.lsh.PrH
The index of bucket.
umatrix() - Method in class smile.vq.SOM
Calculates the unified distance matrix (u-matrix) for visualization.
update - Variable in class smile.base.mlp.Layer
The weight update of mini batch or momentum.
update(double, double) - Method in class smile.base.mlp.Layer
Adjust network weights by back-propagation algorithm.
update() - Method in class smile.base.mlp.MultilayerPerceptron
Updates the weights.
update(int[], int) - Method in class smile.classification.DiscreteNaiveBayes
Online learning of naive Bayes classifier on a sequence, which is modeled as a bag of words.
update(SparseArray, int) - Method in class smile.classification.DiscreteNaiveBayes
Online learning of naive Bayes classifier on a sequence, which is modeled as a bag of words.
update(int[][], int[]) - Method in class smile.classification.DiscreteNaiveBayes
Batch learning of naive Bayes classifier on sequences, which are modeled as a bag of words.
update(SparseArray[], int[]) - Method in class smile.classification.DiscreteNaiveBayes
Batch learning of naive Bayes classifier on sequences, which are modeled as a bag of words.
update(double[], int) - Method in class smile.classification.LogisticRegression
 
update(int[], int) - Method in class smile.classification.Maxent
 
update(double[], int) - Method in class smile.classification.MLP
 
update(double[][], int[]) - Method in class smile.classification.MLP
Mini-batch.
update(T[], int[]) - Method in interface smile.classification.OnlineClassifier
Updates the model with a (micro-)batch of new samples.
update(T, int) - Method in interface smile.classification.OnlineClassifier
Online update the classifier with a new training instance.
update(int) - Method in class smile.manifold.TSNE
Performs additional iterations.
update(double[], E) - Method in class smile.neighbor.MutableLSH
Update an entry with new key.
update(double[]) - Method in class smile.projection.GHA
Update the model with a new sample.
update(Tuple) - Method in class smile.regression.LinearModel
Online update the regression model with a new training instance.
update(DataFrame) - Method in class smile.regression.LinearModel
Online update the regression model with a new data frame.
update(double[], double) - Method in class smile.regression.LinearModel
 
update(double[], double, double) - Method in class smile.regression.LinearModel
Recursive least squares.
update(double[], double) - Method in class smile.regression.MLP
 
update(double[][], double[]) - Method in class smile.regression.MLP
 
update(T[], double[]) - Method in interface smile.regression.OnlineRegression
Updates the model with a (micro-)batch of new samples.
update(T, double) - Method in interface smile.regression.OnlineRegression
Online update the regression model with a new training instance.
update(T[][], int, ToIntFunction<T>) - Method in class smile.sequence.HMM
Updates the HMM by the Baum-Welch algorithm.
update(int[][], int) - Method in class smile.sequence.HMM
Updates the HMM by the Baum-Welch algorithm.
update(T[][], int) - Method in class smile.sequence.HMMLabeler
Updates the HMM by the Baum-Welch algorithm.
update(double[]) - Method in class smile.vq.BIRCH
 
update(double[]) - Method in class smile.vq.GrowingNeuralGas
 
update(double[], double) - Method in class smile.vq.hebb.Neuron
Updates the reference vector by w += eps * (x - w).
update(double[]) - Method in class smile.vq.NeuralGas
 
update(double[]) - Method in class smile.vq.NeuralMap
 
update(double[]) - Method in class smile.vq.SOM
 
update(double[]) - Method in interface smile.vq.VectorQuantizer
Update the codebook with a new observation.
updateBias - Variable in class smile.base.mlp.Layer
The bias update of mini batch or momentum.
UPGMALinkage - Class in smile.clustering.linkage
Unweighted Pair Group Method with Arithmetic mean (also known as average linkage).
UPGMALinkage(double[][]) - Constructor for class smile.clustering.linkage.UPGMALinkage
Constructor.
UPGMALinkage(int, float[]) - Constructor for class smile.clustering.linkage.UPGMALinkage
Constructor.
UPGMCLinkage - Class in smile.clustering.linkage
Unweighted Pair Group Method using Centroids (also known as centroid linkage).
UPGMCLinkage(double[][]) - Constructor for class smile.clustering.linkage.UPGMCLinkage
Constructor.
UPGMCLinkage(int, float[]) - Constructor for class smile.clustering.linkage.UPGMCLinkage
Constructor.

V

Validation - Interface in smile.validation
A utility class for validating predictive models on test data.
value - Variable in class smile.neighbor.Neighbor
The data object of neighbor.
valueOf(String) - Static method in enum smile.base.cart.Loss.Type
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in interface smile.base.cart.Loss
Parses the loss.
valueOf(String) - Static method in enum smile.base.cart.SplitRule
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum smile.base.mlp.Cost
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum smile.base.mlp.OutputFunction
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum smile.classification.DiscreteNaiveBayes.Model
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum smile.feature.Normalizer.Norm
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum smile.gap.Crossover
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum smile.validation.AdjustedMutualInformation.Method
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum smile.validation.NormalizedMutualInformation.Method
Returns the enum constant of this type with the specified name.
values() - Static method in enum smile.base.cart.Loss.Type
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum smile.base.cart.SplitRule
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum smile.base.mlp.Cost
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum smile.base.mlp.OutputFunction
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum smile.classification.DiscreteNaiveBayes.Model
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum smile.feature.Normalizer.Norm
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum smile.gap.Crossover
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Method in class smile.neighbor.MutableLSH
Returns the values.
values() - Static method in enum smile.validation.AdjustedMutualInformation.Method
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum smile.validation.NormalizedMutualInformation.Method
Returns an array containing the constants of this enum type, in the order they are declared.
var - Variable in class smile.neighbor.lsh.NeighborHashValueModel
Variance of hash values of neighbors.
VectorQuantizer - Interface in smile.vq
Vector quantizer with competitive learning.
viterbi(Tuple[]) - Method in class smile.sequence.CRF
Labels sequence with Viterbi algorithm.
viterbi(T[]) - Method in class smile.sequence.CRFLabeler
Labels sequence with Viterbi algorithm.
vote(Tuple, double[]) - Method in class smile.classification.RandomForest
Predict and estimate the probability by voting.

W

w - Variable in class smile.neighbor.LSH
The width of projection.
w - Variable in class smile.vq.hebb.Neuron
The reference vector.
WardLinkage - Class in smile.clustering.linkage
Ward's linkage.
WardLinkage(double[][]) - Constructor for class smile.clustering.linkage.WardLinkage
Constructor.
WardLinkage(int, float[]) - Constructor for class smile.clustering.linkage.WardLinkage
Constructor.
Wavelet - Class in smile.wavelet
A wavelet is a wave-like oscillation with an amplitude that starts out at zero, increases, and then decreases back to zero.
Wavelet(double[]) - Constructor for class smile.wavelet.Wavelet
Constructor.
WaveletShrinkage - Interface in smile.wavelet
The wavelet shrinkage is a signal denoising technique based on the idea of thresholding the wavelet coefficients.
weight - Variable in class smile.base.mlp.Layer
The affine transformation matrix.
weights() - Method in class smile.base.svm.KernelMachine
Returns the weights of instances.
width - Variable in class smile.manifold.LaplacianEigenmap
The width of heat kernel.
WinsorScaler - Class in smile.feature
Scales all numeric variables into the range [0, 1].
WinsorScaler(StructType, double[], double[]) - Constructor for class smile.feature.WinsorScaler
Constructor.
WPGMALinkage - Class in smile.clustering.linkage
Weighted Pair Group Method with Arithmetic mean.
WPGMALinkage(double[][]) - Constructor for class smile.clustering.linkage.WPGMALinkage
Constructor.
WPGMALinkage(int, float[]) - Constructor for class smile.clustering.linkage.WPGMALinkage
Constructor.
WPGMCLinkage - Class in smile.clustering.linkage
Weighted Pair Group Method using Centroids (also known as median linkage).
WPGMCLinkage(double[][]) - Constructor for class smile.clustering.linkage.WPGMCLinkage
Constructor.
WPGMCLinkage(int, float[]) - Constructor for class smile.clustering.linkage.WPGMCLinkage
Constructor.

X

x - Variable in class smile.base.cart.CART
The training data.
XMeans - Class in smile.clustering
X-Means clustering algorithm, an extended K-Means which tries to automatically determine the number of clusters based on BIC scores.
XMeans(double, double[][], int[]) - Constructor for class smile.clustering.XMeans
Constructor.

Y

y - Variable in class smile.classification.ClassLabels
The sample class id in [0, k).
y - Variable in class smile.clustering.PartitionClustering
The cluster labels of data.
A B C D E F G H I J K L M N O P Q R S T U V W X Y 
Skip navigation links