- CART - Class in smile.base.cart
-
Classification and regression tree.
- CART(Formula, StructType, StructField, Node, double[]) - Constructor for class smile.base.cart.CART
-
Constructor.
- CART(DataFrame, StructField, int, int, int, int, int[], int[][]) - Constructor for class smile.base.cart.CART
-
Constructor.
- CentroidClustering<T,U> - Class in smile.clustering
-
In centroid-based clustering, clusters are represented by a central vector,
which may not necessarily be a member of the data set.
- CentroidClustering(double, T[], int[]) - Constructor for class smile.clustering.CentroidClustering
-
Constructor.
- centroids - Variable in class smile.clustering.CentroidClustering
-
The centroids of each cluster.
- centroids() - Method in class smile.vq.BIRCH
-
Returns the cluster centroids of leaf nodes.
- Chromosome - Interface in smile.gap
-
Artificial chromosomes in genetic algorithm/programming encoding candidate
solutions to an optimization problem.
- CLARANS<T> - Class in smile.clustering
-
Clustering Large Applications based upon RANdomized Search.
- CLARANS(double, T[], int[], Distance<T>) - Constructor for class smile.clustering.CLARANS
-
Constructor.
- classification(T[], int[], BiFunction<T[], int[], Classifier<T>>) - Method in class smile.validation.Bootstrap
-
Runs cross validation tests.
- classification(Formula, DataFrame, BiFunction<Formula, DataFrame, DataFrameClassifier>) - Method in class smile.validation.Bootstrap
-
Runs cross validation tests.
- classification(int, T[], int[], BiFunction<T[], int[], Classifier<T>>) - Static method in class smile.validation.Bootstrap
-
Runs cross validation tests.
- classification(int, Formula, DataFrame, BiFunction<Formula, DataFrame, DataFrameClassifier>) - Static method in class smile.validation.Bootstrap
-
Runs cross validation tests.
- classification(T[], int[], BiFunction<T[], int[], Classifier<T>>) - Method in class smile.validation.CrossValidation
-
Runs cross validation tests.
- classification(Formula, DataFrame, BiFunction<Formula, DataFrame, DataFrameClassifier>) - Method in class smile.validation.CrossValidation
-
Runs cross validation tests.
- classification(int, T[], int[], BiFunction<T[], int[], Classifier<T>>) - Static method in class smile.validation.CrossValidation
-
Runs cross validation tests.
- classification(int, Formula, DataFrame, BiFunction<Formula, DataFrame, DataFrameClassifier>) - Static method in class smile.validation.CrossValidation
-
Runs cross validation tests.
- classification(T[], int[], BiFunction<T[], int[], Classifier<T>>) - Method in class smile.validation.GroupKFold
-
Runs cross validation tests.
- classification(DataFrame, Function<DataFrame, DataFrameClassifier>) - Method in class smile.validation.GroupKFold
-
Runs cross validation tests.
- classification(T[], int[], BiFunction<T[], int[], Classifier<T>>) - Static method in class smile.validation.LOOCV
-
Runs leave-one-out cross validation tests.
- classification(Formula, DataFrame, BiFunction<Formula, DataFrame, DataFrameClassifier>) - Static method in class smile.validation.LOOCV
-
Runs leave-one-out cross validation tests.
- ClassificationMeasure - Interface in smile.validation
-
An abstract interface to measure the classification performance.
- Classifier<T> - Interface in smile.classification
-
A classifier assigns an input object into one of a given number of categories.
- ClassLabels - Class in smile.classification
-
To support arbitrary class labels.
- ClassLabels(int, int[], IntSet) - Constructor for class smile.classification.ClassLabels
-
Constructor.
- ClassLabels(int, int[], IntSet, StructField) - Constructor for class smile.classification.ClassLabels
-
Constructor.
- clear() - Method in class smile.base.cart.CART
-
Clear the workspace of building tree.
- clear(double) - Method in class smile.vq.NeuralMap
-
Removes staled neurons and the edges beyond lifetime.
- clone() - Method in class smile.neighbor.lsh.Probe
-
- clustering(double[][], double[][], int[], int[]) - Method in class smile.clustering.BBDTree
-
Given k cluster centroids, this method assigns data to nearest centroids.
- ClusterMeasure - Interface in smile.validation
-
An abstract interface to measure the clustering performance.
- coefficients() - Method in class smile.regression.LinearModel
-
Returns the linear coefficients (without intercept).
- CoifletWavelet - Class in smile.wavelet
-
Coiflet wavelets.
- CoifletWavelet(int) - Constructor for class smile.wavelet.CoifletWavelet
-
Constructor.
- comparator - Static variable in class smile.base.cart.Split
-
- compareTo(CentroidClustering<T, U>) - Method in class smile.clustering.CentroidClustering
-
- compareTo(MEC<T>) - Method in class smile.clustering.MEC
-
- compareTo(Chromosome) - Method in class smile.gap.BitString
-
- compareTo(PrH) - Method in class smile.neighbor.lsh.PrH
-
- compareTo(Probe) - Method in class smile.neighbor.lsh.Probe
-
- compareTo(PrZ) - Method in class smile.neighbor.lsh.PrZ
-
- compareTo(Neighbor<K, V>) - Method in class smile.neighbor.Neighbor
-
- compareTo(Neuron) - Method in class smile.vq.hebb.Neuron
-
- CompleteLinkage - Class in smile.clustering.linkage
-
Complete linkage.
- CompleteLinkage(double[][]) - Constructor for class smile.clustering.linkage.CompleteLinkage
-
Constructor.
- CompleteLinkage(int, float[]) - Constructor for class smile.clustering.linkage.CompleteLinkage
-
Constructor.
- components - Variable in class smile.projection.ICA
-
The independent components (row-wise).
- computeError(double[], double) - Method in class smile.base.mlp.OutputLayer
-
Compute the network output error.
- computeUpdate(double, double, double[]) - Method in class smile.base.mlp.Layer
-
Computes the updates of weight.
- Concept - Class in smile.taxonomy
-
Concept is a set of synonyms, i.e.
- Concept(Concept, String...) - Constructor for class smile.taxonomy.Concept
-
Constructor.
- confidence - Variable in class smile.association.AssociationRule
-
The confidence value.
- ConfusionMatrix - Class in smile.validation
-
The confusion matrix of truth and predictions.
- ConfusionMatrix(int[][]) - Constructor for class smile.validation.ConfusionMatrix
-
Constructor.
- consequent - Variable in class smile.association.AssociationRule
-
Consequent itemset.
- coordinates - Variable in class smile.manifold.IsoMap
-
The coordinates.
- coordinates - Variable in class smile.manifold.LaplacianEigenmap
-
Coordinate matrix.
- coordinates - Variable in class smile.manifold.LLE
-
Coordinate matrix.
- coordinates - Variable in class smile.manifold.TSNE
-
Coordinate matrix.
- coordinates - Variable in class smile.mds.IsotonicMDS
-
The coordinates.
- coordinates - Variable in class smile.mds.MDS
-
The principal coordinates.
- coordinates - Variable in class smile.mds.SammonMapping
-
The coordinates.
- cor(double[][]) - Static method in class smile.projection.PCA
-
Fits principal component analysis with correlation matrix.
- Cost - Enum in smile.base.mlp
-
Neural network cost function.
- cost() - Method in class smile.base.mlp.OutputLayer
-
Returns the cost function of neural network.
- count() - Method in class smile.base.cart.DecisionNode
-
Returns the number of node samples in each class.
- counter - Variable in class smile.vq.hebb.Neuron
-
The local counter variable (e.g.
- CoverTree<E> - Class in smile.neighbor
-
Cover tree is a data structure for generic nearest neighbor search, which
is especially efficient in spaces with small intrinsic dimension.
- CoverTree(E[], Metric<E>) - Constructor for class smile.neighbor.CoverTree
-
Constructor.
- CoverTree(E[], Metric<E>, double) - Constructor for class smile.neighbor.CoverTree
-
Constructor.
- CRF - Class in smile.sequence
-
First-order linear conditional random field.
- CRF(StructType, RegressionTree[][], double) - Constructor for class smile.sequence.CRF
-
Constructor.
- CRFLabeler<T> - Class in smile.sequence
-
First-order CRF sequence labeler.
- CRFLabeler(CRF, Function<T, Tuple>) - Constructor for class smile.sequence.CRFLabeler
-
Constructor.
- crossover(Chromosome) - Method in class smile.gap.BitString
-
- crossover(Chromosome) - Method in interface smile.gap.Chromosome
-
Returns a pair of offsprings by crossovering this one with another one
according to the crossover rate, which determines how often will be
crossover performed.
- Crossover - Enum in smile.gap
-
The types of crossover operation.
- CrossValidation - Class in smile.validation
-
Cross-validation is a technique for assessing how the results of a
statistical analysis will generalize to an independent data set.
- CrossValidation(int, int) - Constructor for class smile.validation.CrossValidation
-
Constructor.
- CrossValidation(int, int, boolean) - Constructor for class smile.validation.CrossValidation
-
Constructor.
- f(double[]) - Method in interface smile.base.mlp.ActivationFunction
-
The output function.
- f(double[]) - Method in class smile.base.mlp.HiddenLayer
-
- f(double[]) - Method in class smile.base.mlp.Layer
-
The activation or output function.
- f(double[]) - Method in enum smile.base.mlp.OutputFunction
-
The output function.
- f(double[]) - Method in class smile.base.mlp.OutputLayer
-
- f(T) - Method in class smile.base.rbf.RBF
-
The activation function.
- f(T) - Method in class smile.base.svm.KernelMachine
-
Returns the decision function value.
- f(double[]) - Method in class smile.base.svm.LinearKernelMachine
-
Returns the value of decision function.
- f(int[]) - Method in class smile.base.svm.LinearKernelMachine
-
Returns the value of decision function.
- f(SparseArray) - Method in class smile.base.svm.LinearKernelMachine
-
Returns the value of decision function.
- f(T) - Method in interface smile.classification.Classifier
-
Returns the real-valued decision function value.
- f(double) - Method in class smile.projection.ica.Gaussian
-
- f(double) - Method in class smile.projection.ica.Kurtosis
-
- f(double) - Method in class smile.projection.ica.LogCosh
-
- Fallout - Class in smile.validation
-
Fall-out, false alarm rate, or false positive rate (FPR)
- Fallout() - Constructor for class smile.validation.Fallout
-
- falseChild() - Method in class smile.base.cart.InternalNode
-
Returns the false branch child.
- FDR - Class in smile.validation
-
The false discovery rate (FDR) is ratio of false positives
to combined true and false positives, which is actually 1 - precision.
- FDR() - Constructor for class smile.validation.FDR
-
- feature() - Method in class smile.base.cart.InternalNode
-
Returns the split feature.
- FeatureRanking - Interface in smile.feature
-
Univariate feature ranking metric.
- features - Variable in class smile.sequence.CRFLabeler
-
The feature function.
- FeatureTransform - Interface in smile.feature
-
Feature transformation.
- field - Variable in class smile.classification.ClassLabels
-
The optional meta data of response variable.
- findBestSplit(LeafNode, int, int, boolean[]) - Method in class smile.base.cart.CART
-
Finds the best attribute to split on a set of samples.
- findBestSplit(LeafNode, int, double, int, int) - Method in class smile.base.cart.CART
-
Finds the best split for given column.
- findBestSplit(LeafNode, int, double, int, int) - Method in class smile.classification.DecisionTree
-
- findBestSplit(LeafNode, int, double, int, int) - Method in class smile.regression.RegressionTree
-
- fit(double[][], int) - Static method in class smile.base.rbf.RBF
-
Learns Gaussian RBF function and centers from data.
- fit(double[][], int, int) - Static method in class smile.base.rbf.RBF
-
Learns Gaussian RBF function and centers from data.
- fit(double[][], int, double) - Static method in class smile.base.rbf.RBF
-
Learns Gaussian RBF function and centers from data.
- fit(T[], Metric<T>, int) - Static method in class smile.base.rbf.RBF
-
Learns Gaussian RBF function and centers from data.
- fit(T[], Metric<T>, int, int) - Static method in class smile.base.rbf.RBF
-
Learns Gaussian RBF function and centers from data.
- fit(T[], Metric<T>, int, double) - Static method in class smile.base.rbf.RBF
-
Learns Gaussian RBF function and centers from data.
- fit(T[], int[]) - Method in class smile.base.svm.LASVM
-
Trains the model.
- fit(T[], int[], int) - Method in class smile.base.svm.LASVM
-
Trains the model.
- fit(T[], double[]) - Method in class smile.base.svm.SVR
-
Fits a epsilon support vector regression model.
- fit(Formula, DataFrame) - Static method in class smile.classification.AdaBoost
-
Fits a AdaBoost model.
- fit(Formula, DataFrame, Properties) - Static method in class smile.classification.AdaBoost
-
Fits a AdaBoost model.
- fit(Formula, DataFrame, int, int, int, int) - Static method in class smile.classification.AdaBoost
-
Fits a AdaBoost model.
- fit(int[]) - Static method in class smile.classification.ClassLabels
-
Learns the class label mapping from samples.
- fit(int[], StructField) - Static method in class smile.classification.ClassLabels
-
Learns the class label mapping from samples.
- fit(BaseVector) - Static method in class smile.classification.ClassLabels
-
Learns the class label mapping from samples.
- fit(Formula, DataFrame) - Static method in class smile.classification.DecisionTree
-
Learns a classification tree.
- fit(Formula, DataFrame, Properties) - Static method in class smile.classification.DecisionTree
-
Learns a classification tree.
- fit(Formula, DataFrame, SplitRule, int, int, int) - Static method in class smile.classification.DecisionTree
-
Learns a classification tree.
- fit(Formula, DataFrame) - Static method in class smile.classification.FLD
-
Learn Fisher's linear discriminant.
- fit(Formula, DataFrame, Properties) - Static method in class smile.classification.FLD
-
Learn Fisher's linear discriminant.
- fit(double[][], int[]) - Static method in class smile.classification.FLD
-
Learn Fisher's linear discriminant.
- fit(double[][], int[], int, double) - Static method in class smile.classification.FLD
-
Learn Fisher's linear discriminant.
- fit(Formula, DataFrame) - Static method in class smile.classification.GradientTreeBoost
-
Fits a gradient tree boosting for classification.
- fit(Formula, DataFrame, Properties) - Static method in class smile.classification.GradientTreeBoost
-
Fits a gradient tree boosting for classification.
- fit(Formula, DataFrame, int, int, int, int, double, double) - Static method in class smile.classification.GradientTreeBoost
-
Fits a gradient tree boosting for classification.
- fit(double[], int[]) - Static method in class smile.classification.IsotonicRegressionScaling
-
Trains the Isotonic Regression scaling.
- fit(T[], int[], Distance<T>) - Static method in class smile.classification.KNN
-
Learn the 1-NN classifier.
- fit(T[], int[], Distance<T>, int) - Static method in class smile.classification.KNN
-
Learn the K-NN classifier.
- fit(double[][], int[]) - Static method in class smile.classification.KNN
-
Learn the 1-NN classifier.
- fit(double[][], int[], int) - Static method in class smile.classification.KNN
-
Learn the K-NN classifier.
- fit(Formula, DataFrame) - Static method in class smile.classification.LDA
-
Learns linear discriminant analysis.
- fit(Formula, DataFrame, Properties) - Static method in class smile.classification.LDA
-
Learns linear discriminant analysis.
- fit(double[][], int[]) - Static method in class smile.classification.LDA
-
Learns linear discriminant analysis.
- fit(double[][], int[], Properties) - Static method in class smile.classification.LDA
-
Learns linear discriminant analysis.
- fit(double[][], int[], double[], double) - Static method in class smile.classification.LDA
-
Learns linear discriminant analysis.
- fit(Formula, DataFrame) - Static method in class smile.classification.LogisticRegression
-
Learn logistic regression.
- fit(Formula, DataFrame, Properties) - Static method in class smile.classification.LogisticRegression
-
Learn logistic regression.
- fit(double[][], int[]) - Static method in class smile.classification.LogisticRegression
-
Learn logistic regression.
- fit(double[][], int[], Properties) - Static method in class smile.classification.LogisticRegression
-
Learn logistic regression.
- fit(double[][], int[], double, double, int) - Static method in class smile.classification.LogisticRegression
-
Learn logistic regression.
- fit(int, int[][], int[]) - Static method in class smile.classification.Maxent
-
Learn maximum entropy classifier.
- fit(int, int[][], int[], Properties) - Static method in class smile.classification.Maxent
-
Learn maximum entropy classifier.
- fit(int, int[][], int[], double, double, int) - Static method in class smile.classification.Maxent
-
Learn maximum entropy classifier.
- fit(T[], int[], BiFunction<T[], int[], Classifier<T>>) - Static method in class smile.classification.OneVersusOne
-
Fits a multi-class model with binary classifiers.
- fit(T[], int[], int, int, BiFunction<T[], int[], Classifier<T>>) - Static method in class smile.classification.OneVersusOne
-
Fits a multi-class model with binary classifiers.
- fit(T[], int[], BiFunction<T[], int[], Classifier<T>>) - Static method in class smile.classification.OneVersusRest
-
Fits a multi-class model with binary classifiers.
- fit(T[], int[], int, int, BiFunction<T[], int[], Classifier<T>>) - Static method in class smile.classification.OneVersusRest
-
Fits a multi-class model with binary classifiers.
- fit(double[], int[]) - Static method in class smile.classification.PlattScaling
-
Trains the Platt scaling.
- fit(double[], int[], int) - Static method in class smile.classification.PlattScaling
-
Trains the Platt scaling.
- fit(Classifier<T>, T[], int[]) - Static method in class smile.classification.PlattScaling
-
Fits Platt Scaling to estimate posteriori probabilities.
- fit(Formula, DataFrame) - Static method in class smile.classification.QDA
-
Learns quadratic discriminant analysis.
- fit(Formula, DataFrame, Properties) - Static method in class smile.classification.QDA
-
Learns quadratic discriminant analysis.
- fit(double[][], int[]) - Static method in class smile.classification.QDA
-
Learn quadratic discriminant analysis.
- fit(double[][], int[], Properties) - Static method in class smile.classification.QDA
-
Learns quadratic discriminant analysis.
- fit(double[][], int[], double[], double) - Static method in class smile.classification.QDA
-
Learn quadratic discriminant analysis.
- fit(Formula, DataFrame) - Static method in class smile.classification.RandomForest
-
Fits a random forest for classification.
- fit(Formula, DataFrame, Properties) - Static method in class smile.classification.RandomForest
-
Fits a random forest for classification.
- fit(Formula, DataFrame, int, int, SplitRule, int, int, int, double) - Static method in class smile.classification.RandomForest
-
Fits a random forest for classification.
- fit(Formula, DataFrame, int, int, SplitRule, int, int, int, double, int[]) - Static method in class smile.classification.RandomForest
-
Fits a random forest for regression.
- fit(Formula, DataFrame, int, int, SplitRule, int, int, int, double, int[], LongStream) - Static method in class smile.classification.RandomForest
-
Fits a random forest for classification.
- fit(T[], int[], RBF<T>[]) - Static method in class smile.classification.RBFNetwork
-
Fits a RBF network.
- fit(T[], int[], RBF<T>[], boolean) - Static method in class smile.classification.RBFNetwork
-
Fits a RBF network.
- fit(Formula, DataFrame) - Static method in class smile.classification.RDA
-
Learns regularized discriminant analysis.
- fit(Formula, DataFrame, Properties) - Static method in class smile.classification.RDA
-
Learns regularized discriminant analysis.
- fit(double[][], int[], Properties) - Static method in class smile.classification.RDA
-
Learns regularized discriminant analysis.
- fit(double[][], int[], double) - Static method in class smile.classification.RDA
-
Learn regularized discriminant analysis.
- fit(double[][], int[], double, double[], double) - Static method in class smile.classification.RDA
-
Learn regularized discriminant analysis.
- fit(double[][], int[], double, double) - Static method in class smile.classification.SVM
-
Fits a binary-class linear SVM.
- fit(int[][], int[], int, double, double) - Static method in class smile.classification.SVM
-
Fits a binary-class linear SVM of binary sparse data.
- fit(SparseArray[], int[], int, double, double) - Static method in class smile.classification.SVM
-
Fits a binary-class linear SVM.
- fit(T[], int[], MercerKernel<T>, double, double) - Static method in class smile.classification.SVM
-
Fits a binary-class SVM.
- fit(T[], Distance<T>, int) - Static method in class smile.clustering.CLARANS
-
Clustering data into k clusters.
- fit(T[], Distance<T>, int, int) - Static method in class smile.clustering.CLARANS
-
Constructor.
- fit(double[][], int, double) - Static method in class smile.clustering.DBSCAN
-
Clustering the data with KD-tree.
- fit(T[], Distance<T>, int, double) - Static method in class smile.clustering.DBSCAN
-
Clustering the data.
- fit(T[], RNNSearch<T, T>, int, double) - Static method in class smile.clustering.DBSCAN
-
Clustering the data.
- fit(double[][], double, int) - Static method in class smile.clustering.DENCLUE
-
Clustering data.
- fit(double[][], double, int, double, int) - Static method in class smile.clustering.DENCLUE
-
Clustering data.
- fit(double[][], int) - Static method in class smile.clustering.DeterministicAnnealing
-
Clustering data into k clusters.
- fit(double[][], int, double, int, double, double) - Static method in class smile.clustering.DeterministicAnnealing
-
Clustering data into k clusters.
- fit(double[][], int) - Static method in class smile.clustering.GMeans
-
Clustering data with the number of clusters
determined by G-Means algorithm automatically.
- fit(double[][], int, int, double) - Static method in class smile.clustering.GMeans
-
Clustering data with the number of clusters
determined by G-Means algorithm automatically.
- fit(Linkage) - Static method in class smile.clustering.HierarchicalClustering
-
Fits the Agglomerative Hierarchical Clustering with given linkage
method, which includes proximity matrix.
- fit(double[][], int) - Static method in class smile.clustering.KMeans
-
Partitions data into k clusters up to 100 iterations.
- fit(double[][], int, int, double) - Static method in class smile.clustering.KMeans
-
Partitions data into k clusters up to 100 iterations.
- fit(BBDTree, double[][], int, int, double) - Static method in class smile.clustering.KMeans
-
Partitions data into k clusters.
- fit(int[][], int) - Static method in class smile.clustering.KModes
-
Fits k-modes clustering.
- fit(int[][], int, int) - Static method in class smile.clustering.KModes
-
Fits k-modes clustering.
- fit(T[], Distance<T>, int, double) - Static method in class smile.clustering.MEC
-
Clustering the data.
- fit(T[], RNNSearch<T, T>, int, double, int[], double) - Static method in class smile.clustering.MEC
-
Clustering the data.
- fit(SparseArray[], int) - Static method in class smile.clustering.SIB
-
Clustering data into k clusters up to 100 iterations.
- fit(SparseArray[], int, int) - Static method in class smile.clustering.SIB
-
Clustering data into k clusters.
- fit(DenseMatrix, int) - Static method in class smile.clustering.SpectralClustering
-
Spectral graph clustering.
- fit(DenseMatrix, int, int, double) - Static method in class smile.clustering.SpectralClustering
-
Spectral graph clustering.
- fit(double[][], int, double) - Static method in class smile.clustering.SpectralClustering
-
Spectral clustering the data.
- fit(double[][], int, double, int, double) - Static method in class smile.clustering.SpectralClustering
-
Spectral clustering the data.
- fit(double[][], int, int, double) - Static method in class smile.clustering.SpectralClustering
-
Spectral clustering with Nystrom approximation.
- fit(double[][], int, int, double, int, double) - Static method in class smile.clustering.SpectralClustering
-
Spectral clustering with Nystrom approximation.
- fit(double[][], int) - Static method in class smile.clustering.XMeans
-
Clustering data with the number of clusters
determined by X-Means algorithm automatically.
- fit(double[][], int, int, double) - Static method in class smile.clustering.XMeans
-
Clustering data with the number of clusters
determined by X-Means algorithm automatically.
- fit(DataFrame) - Static method in class smile.feature.MaxAbsScaler
-
Learns transformation parameters from a dataset.
- fit(double[][]) - Static method in class smile.feature.MaxAbsScaler
-
Learns transformation parameters from a dataset.
- fit(DataFrame) - Static method in class smile.feature.RobustStandardizer
-
Learns transformation parameters from a dataset.
- fit(double[][]) - Static method in class smile.feature.RobustStandardizer
-
Learns transformation parameters from a dataset.
- fit(DataFrame) - Static method in class smile.feature.Scaler
-
Learns transformation parameters from a dataset.
- fit(double[][]) - Static method in class smile.feature.Scaler
-
Learns transformation parameters from a dataset.
- fit(DataFrame) - Static method in class smile.feature.Standardizer
-
Learns transformation parameters from a dataset.
- fit(double[][]) - Static method in class smile.feature.Standardizer
-
Learns transformation parameters from a dataset.
- fit(DataFrame) - Static method in class smile.feature.WinsorScaler
-
Learns transformation parameters from a dataset with 5% lower limit
and 95% upper limit.
- fit(DataFrame, double, double) - Static method in class smile.feature.WinsorScaler
-
Learns transformation parameters from a dataset.
- fit(double[][]) - Static method in class smile.feature.WinsorScaler
-
Learns transformation parameters from a dataset.
- fit(double[][], double, double) - Static method in class smile.feature.WinsorScaler
-
Learns transformation parameters from a dataset.
- fit(T) - Method in interface smile.gap.FitnessMeasure
-
Returns the non-negative fitness value of a chromosome.
- fit(RNNSearch<double[], double[]>, double[][], double) - Method in class smile.neighbor.MPLSH
-
Fits the posteriori multiple probe algorithm.
- fit(RNNSearch<double[], double[]>, double[][], double, int) - Method in class smile.neighbor.MPLSH
-
Fits the posteriori multiple probe algorithm.
- fit(RNNSearch<double[], double[]>, double[][], double, int, double) - Method in class smile.neighbor.MPLSH
-
Train the posteriori multiple probe algorithm.
- fit(double[][], int) - Static method in class smile.projection.ICA
-
Fits independent component analysis.
- fit(double[][], int, Properties) - Static method in class smile.projection.ICA
-
Fits independent component analysis.
- fit(double[][], int, DifferentiableFunction, double, int) - Static method in class smile.projection.ICA
-
Fits independent component analysis.
- fit(T[], MercerKernel<T>, int) - Static method in class smile.projection.KPCA
-
Fits kernel principal component analysis.
- fit(T[], MercerKernel<T>, int, double) - Static method in class smile.projection.KPCA
-
Fits kernel principal component analysis.
- fit(double[][]) - Static method in class smile.projection.PCA
-
Fits principal component analysis with covariance matrix.
- fit(double[][], int) - Static method in class smile.projection.PPCA
-
Fits probabilistic principal component analysis.
- fit(Formula, DataFrame, Properties) - Static method in class smile.regression.ElasticNet
-
Fit an Elastic Net model.
- fit(Formula, DataFrame, double, double) - Static method in class smile.regression.ElasticNet
-
Fit an Elastic Net model.
- fit(Formula, DataFrame, double, double, double, int) - Static method in class smile.regression.ElasticNet
-
Fit an Elastic Net model.
- fit(T[], double[], MercerKernel<T>, double) - Static method in class smile.regression.GaussianProcessRegression
-
Fits a regular Gaussian process model.
- fit(T[], double[], T[], MercerKernel<T>, double) - Static method in class smile.regression.GaussianProcessRegression
-
Fits an approximate Gaussian process model by the method of subset of regressors.
- fit(Formula, DataFrame) - Static method in class smile.regression.GradientTreeBoost
-
Fits a gradient tree boosting for regression.
- fit(Formula, DataFrame, Properties) - Static method in class smile.regression.GradientTreeBoost
-
Fits a gradient tree boosting for regression.
- fit(Formula, DataFrame, Loss, int, int, int, int, double, double) - Static method in class smile.regression.GradientTreeBoost
-
Fits a gradient tree boosting for regression.
- fit(Formula, DataFrame) - Static method in class smile.regression.LASSO
-
Fits a L1-regularized least squares model.
- fit(Formula, DataFrame, Properties) - Static method in class smile.regression.LASSO
-
Fits a L1-regularized least squares model.
- fit(Formula, DataFrame, double) - Static method in class smile.regression.LASSO
-
Fits a L1-regularized least squares model.
- fit(Formula, DataFrame, double, double, int) - Static method in class smile.regression.LASSO
-
Fits a L1-regularized least squares model.
- fit(Formula, DataFrame) - Static method in class smile.regression.OLS
-
Fits an ordinary least squares model.
- fit(Formula, DataFrame, Properties) - Static method in class smile.regression.OLS
-
Fits an ordinary least squares model.
- fit(Formula, DataFrame, String, boolean, boolean) - Static method in class smile.regression.OLS
-
Fits an ordinary least squares model.
- fit(Formula, DataFrame) - Static method in class smile.regression.RandomForest
-
Learns a random forest for regression.
- fit(Formula, DataFrame, Properties) - Static method in class smile.regression.RandomForest
-
Learns a random forest for regression.
- fit(Formula, DataFrame, int, int, int, int, int, double) - Static method in class smile.regression.RandomForest
-
Learns a random forest for regression.
- fit(Formula, DataFrame, int, int, int, int, int, double, LongStream) - Static method in class smile.regression.RandomForest
-
Learns a random forest for regression.
- fit(T[], double[], RBF<T>[]) - Static method in class smile.regression.RBFNetwork
-
Fits a RBF network.
- fit(T[], double[], RBF<T>[], boolean) - Static method in class smile.regression.RBFNetwork
-
Fits a RBF network.
- fit(Formula, DataFrame) - Static method in class smile.regression.RegressionTree
-
Learns a regression tree.
- fit(Formula, DataFrame, Properties) - Static method in class smile.regression.RegressionTree
-
Learns a regression tree.
- fit(Formula, DataFrame, int, int, int) - Static method in class smile.regression.RegressionTree
-
Learns a regression tree.
- fit(Formula, DataFrame) - Static method in class smile.regression.RidgeRegression
-
Fits a ridge regression model.
- fit(Formula, DataFrame, Properties) - Static method in class smile.regression.RidgeRegression
-
Fits a ridge regression model.
- fit(Formula, DataFrame, double) - Static method in class smile.regression.RidgeRegression
-
Fits a ridge regression model.
- fit(double[][], double[], double, double, double) - Static method in class smile.regression.SVR
-
Fits a linear epsilon-SVR.
- fit(int[][], double[], int, double, double, double) - Static method in class smile.regression.SVR
-
Fits a linear epsilon-SVR of binary sparse data.
- fit(SparseArray[], double[], int, double, double, double) - Static method in class smile.regression.SVR
-
Fits a linear epsilon-SVR of sparse data.
- fit(T[], double[], MercerKernel<T>, double, double, double) - Static method in class smile.regression.SVR
-
Fits a epsilon-SVR.
- fit(Tuple[][], int[][]) - Static method in class smile.sequence.CRF
-
Fits a CRF model.
- fit(Tuple[][], int[][], Properties) - Static method in class smile.sequence.CRF
-
Fits a CRF model.
- fit(Tuple[][], int[][], int, int, int, int, double) - Static method in class smile.sequence.CRF
-
Fits a CRF model.
- fit(T[][], int[][], Function<T, Tuple>) - Static method in class smile.sequence.CRFLabeler
-
Fits a CRF model.
- fit(T[][], int[][], Function<T, Tuple>, Properties) - Static method in class smile.sequence.CRFLabeler
-
Fits a CRF model.
- fit(T[][], int[][], Function<T, Tuple>, int, int, int, int, double) - Static method in class smile.sequence.CRFLabeler
-
Fits a CRF.
- fit(int[][], int[][]) - Static method in class smile.sequence.HMM
-
Fits an HMM by maximum likelihood estimation.
- fit(T[][], int[][], ToIntFunction<T>) - Static method in class smile.sequence.HMM
-
Fits an HMM by maximum likelihood estimation.
- fit(T[][], int[][], ToIntFunction<T>) - Static method in class smile.sequence.HMMLabeler
-
Fits an HMM by maximum likelihood estimation.
- fitness(double[][], int[], double[][], int[], ClassificationMeasure, BiFunction<double[][], int[], Classifier<double[]>>) - Static method in class smile.feature.GAFE
-
Returns a classification fitness measure.
- fitness(double[][], double[], double[][], double[], RegressionMeasure, BiFunction<double[][], double[], Regression<double[]>>) - Static method in class smile.feature.GAFE
-
Returns a regression fitness measure.
- fitness(String, DataFrame, DataFrame, ClassificationMeasure, BiFunction<Formula, DataFrame, DataFrameClassifier>) - Static method in class smile.feature.GAFE
-
Returns a classification fitness measure.
- fitness(String, DataFrame, DataFrame, RegressionMeasure, BiFunction<Formula, DataFrame, DataFrameRegression>) - Static method in class smile.feature.GAFE
-
Returns a regression fitness measure.
- fitness() - Method in class smile.gap.BitString
-
- fitness() - Method in interface smile.gap.Chromosome
-
Returns the fitness of chromosome.
- FitnessMeasure<T extends Chromosome> - Interface in smile.gap
-
A measure to evaluate the fitness of chromosomes.
- fittedValues() - Method in class smile.regression.LinearModel
-
Returns the fitted values.
- FLD - Class in smile.classification
-
Fisher's linear discriminant.
- FLD(double[], double[][], DenseMatrix) - Constructor for class smile.classification.FLD
-
Constructor.
- FLD(double[], double[][], DenseMatrix, IntSet) - Constructor for class smile.classification.FLD
-
Constructor.
- FMeasure - Class in smile.validation
-
The F-score (or F-measure) considers both the precision and the recall of the test
to compute the score.
- FMeasure() - Constructor for class smile.validation.FMeasure
-
Constructor of F1 score.
- FMeasure(double) - Constructor for class smile.validation.FMeasure
-
Constructor of general F-score.
- formula - Variable in class smile.base.cart.CART
-
Design matrix formula
- formula() - Method in class smile.classification.AdaBoost
-
- formula() - Method in interface smile.classification.DataFrameClassifier
-
Returns the formula associated with the model.
- formula() - Method in class smile.classification.DecisionTree
-
Returns null if the tree is part of ensemble algorithm.
- formula() - Method in class smile.classification.GradientTreeBoost
-
- formula() - Method in class smile.classification.RandomForest
-
- formula() - Method in interface smile.regression.DataFrameRegression
-
Returns the formula associated with the model.
- formula() - Method in class smile.regression.GradientTreeBoost
-
- formula() - Method in class smile.regression.LinearModel
-
- formula() - Method in class smile.regression.RandomForest
-
- formula() - Method in class smile.regression.RegressionTree
-
Returns null if the tree is part of ensemble algorithm.
- FPGrowth - Class in smile.association
-
Frequent item set mining based on the FP-growth (frequent pattern growth)
algorithm, which employs an extended prefix-tree (FP-tree) structure to
store the database in a compressed form.
- FPTree - Class in smile.association
-
FP-tree data structure used in FP-growth (frequent pattern growth)
algorithm for frequent item set mining.
- ftest() - Method in class smile.regression.LinearModel
-
Returns the F-statistic of goodness-of-fit.
- g(double[], double[]) - Method in interface smile.base.mlp.ActivationFunction
-
The gradient function.
- g(Cost, double[], double[]) - Method in enum smile.base.mlp.OutputFunction
-
The gradient function.
- g(double) - Method in class smile.projection.ica.Gaussian
-
- g(double) - Method in class smile.projection.ica.Kurtosis
-
- g(double) - Method in class smile.projection.ica.LogCosh
-
- g2(double) - Method in class smile.projection.ica.Gaussian
-
- g2(double) - Method in class smile.projection.ica.Kurtosis
-
- g2(double) - Method in class smile.projection.ica.LogCosh
-
- GAFE - Class in smile.feature
-
Genetic algorithm based feature selection.
- GAFE() - Constructor for class smile.feature.GAFE
-
Constructor.
- GAFE(Selection, int, Crossover, double, double) - Constructor for class smile.feature.GAFE
-
Constructor.
- Gaussian - Class in smile.projection.ica
-
This function may be better than LogCosh when the independent
components are highly super-Gaussian, or when robustness is very important.
- Gaussian() - Constructor for class smile.projection.ica.Gaussian
-
- Gaussian(double, double) - Static method in interface smile.vq.Neighborhood
-
Returns Gaussian neighborhood function.
- GaussianProcessRegression - Class in smile.regression
-
Gaussian Process for Regression.
- GaussianProcessRegression() - Constructor for class smile.regression.GaussianProcessRegression
-
- GeneticAlgorithm<T extends Chromosome> - Class in smile.gap
-
A genetic algorithm (GA) is a search heuristic that mimics the process of
natural evolution.
- GeneticAlgorithm(T[]) - Constructor for class smile.gap.GeneticAlgorithm
-
Constructor.
- GeneticAlgorithm(T[], Selection, int) - Constructor for class smile.gap.GeneticAlgorithm
-
Constructor.
- get(int) - Method in class smile.neighbor.lsh.Hash
-
Returns the bucket entry for the given hash value.
- get(double[]) - Method in class smile.neighbor.lsh.Hash
-
Returns the bucket entry for the given point.
- getCenter() - Method in class smile.projection.PCA
-
Returns the center of data.
- getCenter() - Method in class smile.projection.PPCA
-
Returns the center of data.
- getChildren() - Method in class smile.taxonomy.Concept
-
Get all children concepts.
- getConcept(String) - Method in class smile.taxonomy.Taxonomy
-
Returns a concept node which synset contains the keyword.
- getConcepts() - Method in class smile.taxonomy.Taxonomy
-
Returns all named concepts from this taxonomy
- getCoordinates() - Method in class smile.projection.KPCA
-
Returns the nonlinear principal component scores, i.e., the representation
of learning data in the nonlinear principal component space.
- getCumulativeVarianceProportion() - Method in class smile.projection.PCA
-
Returns the cumulative proportion of variance contained in principal components,
ordered from largest to smallest.
- getHeight() - Method in class smile.clustering.HierarchicalClustering
-
Returns a set of n-1 non-decreasing real values, which are the clustering height,
i.e., the value of the criterion associated with the clustering method
for the particular agglomeration.
- getInitialStateProbabilities() - Method in class smile.sequence.HMM
-
Returns the initial state probabilities.
- getInputSize() - Method in class smile.base.mlp.Layer
-
Returns the dimension of input vector (not including bias value).
- getKeywords() - Method in class smile.taxonomy.Concept
-
Returns the concept synonym set.
- getLearningRate() - Method in class smile.base.mlp.MultilayerPerceptron
-
Returns the learning rate.
- getLearningRate() - Method in class smile.classification.LogisticRegression
-
Returns the learning rate of stochastic gradient descent.
- getLearningRate() - Method in class smile.classification.Maxent
-
Returns the learning rate of stochastic gradient descent.
- getLearningRate() - Method in class smile.projection.GHA
-
Returns the learning rate.
- getLoadings() - Method in class smile.projection.PCA
-
Returns the variable loading matrix, ordered from largest to smallest
by corresponding eigenvalues.
- getLoadings() - Method in class smile.projection.PPCA
-
Returns the variable loading matrix, ordered from largest to smallest
by corresponding eigenvalues.
- getLocalSearchSteps() - Method in class smile.gap.GeneticAlgorithm
-
Gets the number of iterations of local search for Lamarckian algorithm.
- getMomentum() - Method in class smile.base.mlp.MultilayerPerceptron
-
Returns the momentum factor.
- getNoiseVariance() - Method in class smile.projection.PPCA
-
Returns the variance of noise.
- getOutputSize() - Method in class smile.base.mlp.Layer
-
Returns the dimension of output vector.
- getPathFromRoot() - Method in class smile.taxonomy.Concept
-
Returns the path from root to the given node.
- getPathToRoot() - Method in class smile.taxonomy.Concept
-
Returns the path from the given node to the root.
- getProbeSequence(double[], double, int) - Method in class smile.neighbor.lsh.PosterioriModel
-
Generate query-directed probes.
- getProjection() - Method in class smile.classification.FLD
-
Returns the projection matrix W.
- getProjection() - Method in class smile.projection.GHA
-
Returns the projection matrix.
- getProjection() - Method in class smile.projection.KPCA
-
Returns the projection matrix.
- getProjection() - Method in interface smile.projection.LinearProjection
-
Returns the projection matrix.
- getProjection() - Method in class smile.projection.PCA
-
- getProjection() - Method in class smile.projection.PPCA
-
Returns the projection matrix.
- getProjection() - Method in class smile.projection.RandomProjection
-
- getRoot() - Method in class smile.taxonomy.Taxonomy
-
Returns the root node of taxonomy tree.
- getStateTransitionProbabilities() - Method in class smile.sequence.HMM
-
Returns the state transition probabilities.
- getSymbolEmissionProbabilities() - Method in class smile.sequence.HMM
-
Returns the symbol emission probabilities.
- getTree() - Method in class smile.clustering.HierarchicalClustering
-
Returns an n-1 by 2 matrix of which row i describes the merging of clusters at
step i of the clustering.
- getVariance() - Method in class smile.projection.PCA
-
Returns the principal component variances, ordered from largest to smallest,
which are the eigenvalues of the covariance or correlation matrix of learning data.
- getVarianceProportion() - Method in class smile.projection.PCA
-
Returns the proportion of variance contained in each principal component,
ordered from largest to smallest.
- getVariances() - Method in class smile.projection.KPCA
-
Returns the eigenvalues of kernel principal components, ordered from largest to smallest.
- getWeightDecay() - Method in class smile.base.mlp.MultilayerPerceptron
-
Returns the weight decay factor.
- GHA - Class in smile.projection
-
Generalized Hebbian Algorithm.
- GHA(int, int, double) - Constructor for class smile.projection.GHA
-
Constructor.
- GHA(double[][], double) - Constructor for class smile.projection.GHA
-
Constructor.
- GMeans - Class in smile.clustering
-
G-Means clustering algorithm, an extended K-Means which tries to
automatically determine the number of clusters by normality test.
- GMeans(double, double[][], int[]) - Constructor for class smile.clustering.GMeans
-
Constructor.
- gradient - Variable in class smile.base.mlp.Layer
-
The gradient vector.
- gradient() - Method in class smile.base.mlp.Layer
-
Returns the error/gradient vector.
- GradientTreeBoost - Class in smile.classification
-
Gradient boosting for classification.
- GradientTreeBoost(Formula, RegressionTree[], double, double, double[]) - Constructor for class smile.classification.GradientTreeBoost
-
Constructor of binary class.
- GradientTreeBoost(Formula, RegressionTree[], double, double, double[], IntSet) - Constructor for class smile.classification.GradientTreeBoost
-
Constructor of binary class.
- GradientTreeBoost(Formula, RegressionTree[][], double, double[]) - Constructor for class smile.classification.GradientTreeBoost
-
Constructor of multi-class.
- GradientTreeBoost(Formula, RegressionTree[][], double, double[], IntSet) - Constructor for class smile.classification.GradientTreeBoost
-
Constructor of multi-class.
- GradientTreeBoost - Class in smile.regression
-
Gradient boosting for regression.
- GradientTreeBoost(Formula, RegressionTree[], double, double, double[]) - Constructor for class smile.regression.GradientTreeBoost
-
Constructor.
- graph - Variable in class smile.manifold.IsoMap
-
The nearest neighbor graph.
- graph - Variable in class smile.manifold.LaplacianEigenmap
-
Nearest neighbor graph.
- graph - Variable in class smile.manifold.LLE
-
Nearest neighbor graph.
- GroupKFold - Class in smile.validation
-
GroupKfold is a cross validation technique that splits the data by respecting additional information about groups.
- GroupKFold(int, int, int[]) - Constructor for class smile.validation.GroupKFold
-
Constructor.
- GrowingNeuralGas - Class in smile.vq
-
Growing Neural Gas.
- GrowingNeuralGas(int) - Constructor for class smile.vq.GrowingNeuralGas
-
Constructor.
- GrowingNeuralGas(int, double, double, int, int, double, double) - Constructor for class smile.vq.GrowingNeuralGas
-
Constructor.
- L - Variable in class smile.vq.BIRCH
-
The number of CF entries in the leaf nodes.
- labels - Variable in class smile.classification.ClassLabels
-
The class labels.
- lad() - Static method in interface smile.base.cart.Loss
-
Least absolute deviation regression.
- LamarckianChromosome - Interface in smile.gap
-
Artificial chromosomes used in Lamarckian algorithm that is a hybrid of
of evolutionary computation and a local improver such as hill-climbing.
- lambda - Variable in class smile.base.mlp.MultilayerPerceptron
-
weight decay factor, which is also a regularization term.
- LaplacianEigenmap - Class in smile.manifold
-
Laplacian Eigenmap.
- LaplacianEigenmap(int[], double[][], Graph) - Constructor for class smile.manifold.LaplacianEigenmap
-
Constructor with discrete weights.
- LaplacianEigenmap(double, int[], double[][], Graph) - Constructor for class smile.manifold.LaplacianEigenmap
-
Constructor with Gaussian kernel.
- LASSO - Class in smile.regression
-
Lasso (least absolute shrinkage and selection operator) regression.
- LASSO() - Constructor for class smile.regression.LASSO
-
- LASVM<T> - Class in smile.base.svm
-
LASVM is an approximate SVM solver that uses online approximation.
- LASVM(MercerKernel<T>, double, double) - Constructor for class smile.base.svm.LASVM
-
Constructor.
- LASVM(MercerKernel<T>, double, double, double) - Constructor for class smile.base.svm.LASVM
-
Constructor.
- lattice(int, int, double[][]) - Static method in class smile.vq.SOM
-
Creates a lattice of which the weight vectors are randomly selected from samples.
- Layer - Class in smile.base.mlp
-
A layer in the neural network.
- Layer(int, int) - Constructor for class smile.base.mlp.Layer
-
Constructor.
- LayerBuilder - Class in smile.base.mlp
-
The builder of layers.
- LayerBuilder(int) - Constructor for class smile.base.mlp.LayerBuilder
-
Constructor.
- LDA - Class in smile.classification
-
Linear discriminant analysis.
- LDA(double[], double[][], double[], DenseMatrix) - Constructor for class smile.classification.LDA
-
Constructor.
- LDA(double[], double[][], double[], DenseMatrix, IntSet) - Constructor for class smile.classification.LDA
-
Constructor.
- LeafNode - Class in smile.base.cart
-
A leaf node in decision tree.
- LeafNode(int) - Constructor for class smile.base.cart.LeafNode
-
Constructor.
- leafs() - Method in class smile.base.cart.InternalNode
-
- leafs() - Method in class smile.base.cart.LeafNode
-
- leafs() - Method in interface smile.base.cart.Node
-
Returns the number of leaf nodes in the subtree.
- length - Variable in class smile.gap.BitString
-
The length of chromosome.
- length() - Method in class smile.gap.BitString
-
Returns the length of bit string.
- leverage - Variable in class smile.association.AssociationRule
-
The difference between the probability of the rule and the expected
probability if the items were statistically independent.
- lift - Variable in class smile.association.AssociationRule
-
How many times more often antecedent and consequent occur together
than expected if they were statistically independent.
- linear() - Static method in interface smile.base.mlp.ActivationFunction
-
Linear/Identity function.
- linear(int) - Static method in class smile.base.mlp.Layer
-
Returns a hidden layer with linear activation function.
- LinearKernelMachine - Class in smile.base.svm
-
Linear kernel machine.
- LinearKernelMachine(double[], double) - Constructor for class smile.base.svm.LinearKernelMachine
-
Constructor.
- LinearModel - Class in smile.regression
-
Linear model.
- LinearProjection - Interface in smile.projection
-
Linear projection.
- LinearSearch<T> - Class in smile.neighbor
-
Brute force linear nearest neighbor search.
- LinearSearch(T[], Distance<T>) - Constructor for class smile.neighbor.LinearSearch
-
Constructor.
- Linkage - Class in smile.clustering.linkage
-
A measure of dissimilarity between clusters (i.e.
- Linkage(double[][]) - Constructor for class smile.clustering.linkage.Linkage
-
Initialize the linkage with the lower triangular proximity matrix.
- Linkage(int, float[]) - Constructor for class smile.clustering.linkage.Linkage
-
Initialize the linkage with the lower triangular proximity matrix.
- LLE - Class in smile.manifold
-
Locally Linear Embedding.
- LLE(int[], double[][], Graph) - Constructor for class smile.manifold.LLE
-
Constructor.
- lloyd(double[][], int) - Static method in class smile.clustering.KMeans
-
The implementation of Lloyd algorithm as a benchmark.
- lloyd(double[][], int, int, double) - Static method in class smile.clustering.KMeans
-
The implementation of Lloyd algorithm as a benchmark.
- LLSImputation - Class in smile.imputation
-
Local least squares missing value imputation.
- LLSImputation(int) - Constructor for class smile.imputation.LLSImputation
-
Constructor.
- LogCosh - Class in smile.projection.ica
-
A good general-purpose function for ICA.
- LogCosh() - Constructor for class smile.projection.ica.LogCosh
-
- logistic(int[]) - Static method in interface smile.base.cart.Loss
-
Logistic regression loss for binary classification.
- logistic(int, int, int[], double[][]) - Static method in interface smile.base.cart.Loss
-
Logistic regression loss for multi-class classification.
- LogisticRegression - Class in smile.classification
-
Logistic regression.
- LogisticRegression(double[], double, double) - Constructor for class smile.classification.LogisticRegression
-
Constructor of binary logistic regression.
- LogisticRegression(double, double[], double, IntSet) - Constructor for class smile.classification.LogisticRegression
-
Constructor of binary logistic regression.
- LogisticRegression(double, double[][], double) - Constructor for class smile.classification.LogisticRegression
-
Constructor of multi-class logistic regression.
- LogisticRegression(double, double[][], double, IntSet) - Constructor for class smile.classification.LogisticRegression
-
Constructor of multi-class logistic regression.
- loglikelihood() - Method in class smile.classification.LogisticRegression
-
Returns the log-likelihood of model.
- loglikelihood() - Method in class smile.classification.Maxent
-
Returns the log-likelihood of model.
- logp(int[], int[]) - Method in class smile.sequence.HMM
-
Returns the log joint probability of an observation sequence along a
state sequence given this HMM.
- logp(int[]) - Method in class smile.sequence.HMM
-
Returns the logarithm probability of an observation sequence given this
HMM.
- logp(T[], int[]) - Method in class smile.sequence.HMMLabeler
-
Returns the log joint probability of an observation sequence along a
state sequence.
- logp(T[]) - Method in class smile.sequence.HMMLabeler
-
Returns the logarithm probability of an observation sequence.
- LOOCV - Class in smile.validation
-
Leave-one-out cross validation.
- LOOCV(int) - Constructor for class smile.validation.LOOCV
-
Constructor.
- Loss - Interface in smile.base.cart
-
Regression loss function.
- Loss.Type - Enum in smile.base.cart
-
The type of loss.
- lowestCommonAncestor(String, String) - Method in class smile.taxonomy.Taxonomy
-
Returns the lowest common ancestor (LCA) of concepts v and w.
- lowestCommonAncestor(Concept, Concept) - Method in class smile.taxonomy.Taxonomy
-
Returns the lowest common ancestor (LCA) of concepts v and w.
- ls() - Static method in interface smile.base.cart.Loss
-
Least squares regression.
- ls(double[]) - Static method in interface smile.base.cart.Loss
-
Least squares regression.
- LSH<E> - Class in smile.neighbor
-
Locality-Sensitive Hashing.
- LSH(double[][], E[], double) - Constructor for class smile.neighbor.LSH
-
Constructor.
- LSH(double[][], E[], double, int) - Constructor for class smile.neighbor.LSH
-
Constructor.
- LSH(int, int, int, double) - Constructor for class smile.neighbor.LSH
-
Constructor.
- LSH(int, int, int, double, int) - Constructor for class smile.neighbor.LSH
-
Constructor.
- m - Variable in class smile.neighbor.lsh.PrZ
-
The index of hash function.
- matrix - Variable in class smile.validation.ConfusionMatrix
-
Confusion matrix.
- max(int[], int[]) - Static method in class smile.validation.AdjustedMutualInformation
-
Calculates the adjusted mutual information of (I(y1, y2) - E(MI)) / (max(H(y1), H(y2)) - E(MI)).
- max(int[], int[]) - Static method in class smile.validation.NormalizedMutualInformation
-
Calculates the normalized mutual information of I(y1, y2) / max(H(y1), H(y2)).
- MaxAbsScaler - Class in smile.feature
-
Scales each feature by its maximum absolute value.
- MaxAbsScaler(StructType, double[]) - Constructor for class smile.feature.MaxAbsScaler
-
Constructor.
- maxDepth - Variable in class smile.base.cart.CART
-
The maximum depth of the tree.
- Maxent - Class in smile.classification
-
Maximum Entropy Classifier.
- Maxent(double, double[]) - Constructor for class smile.classification.Maxent
-
Constructor of binary maximum entropy classifier.
- Maxent(double, double[], IntSet) - Constructor for class smile.classification.Maxent
-
Constructor of binary maximum entropy classifier.
- Maxent(double, double[][]) - Constructor for class smile.classification.Maxent
-
Constructor of multi-class maximum entropy classifier.
- Maxent(double, double[][], IntSet) - Constructor for class smile.classification.Maxent
-
Constructor of multi-class maximum entropy classifier.
- maxNodes - Variable in class smile.base.cart.CART
-
The maximum number of leaf nodes in the tree.
- MCC - Class in smile.validation
-
Matthews correlation coefficient.The MCC is in essence a correlation
coefficient between the observed and predicted binary classifications
It is considered as a balanced measure for binary classification,
even in unbalanced data sets.
- MCC() - Constructor for class smile.validation.MCC
-
- MDS - Class in smile.mds
-
Classical multidimensional scaling, also known as principal coordinates
analysis.
- MDS(double[], double[], double[][]) - Constructor for class smile.mds.MDS
-
Constructor.
- mean() - Method in class smile.base.cart.RegressionNode
-
Returns the mean of response variable.
- mean() - Method in class smile.neighbor.lsh.HashValueParzenModel
-
Returns the mean.
- mean - Variable in class smile.neighbor.lsh.NeighborHashValueModel
-
Mean of hash values of neighbors.
- MeanAbsoluteDeviation - Class in smile.validation
-
Mean absolute deviation error.
- MeanAbsoluteDeviation() - Constructor for class smile.validation.MeanAbsoluteDeviation
-
- measure(int[], int[]) - Method in class smile.validation.Accuracy
-
- measure(int[], int[]) - Method in class smile.validation.AdjustedMutualInformation
-
- measure(int[], int[]) - Method in class smile.validation.AdjustedRandIndex
-
- measure(int[], int[]) - Method in interface smile.validation.ClassificationMeasure
-
Returns an index to measure the quality of classification.
- measure(int[], int[]) - Method in interface smile.validation.ClusterMeasure
-
Returns an index to measure the quality of clustering.
- measure(int[], int[]) - Method in class smile.validation.Error
-
- measure(int[], int[]) - Method in class smile.validation.Fallout
-
- measure(int[], int[]) - Method in class smile.validation.FDR
-
- measure(int[], int[]) - Method in class smile.validation.FMeasure
-
- measure(int[], int[]) - Method in class smile.validation.MCC
-
- measure(double[], double[]) - Method in class smile.validation.MeanAbsoluteDeviation
-
- measure(double[], double[]) - Method in class smile.validation.MSE
-
- measure(int[], int[]) - Method in class smile.validation.MutualInformation
-
- measure(int[], int[]) - Method in class smile.validation.NormalizedMutualInformation
-
- measure(int[], int[]) - Method in class smile.validation.Precision
-
- measure(int[], int[]) - Method in class smile.validation.RandIndex
-
- measure(int[], int[]) - Method in class smile.validation.Recall
-
- measure(double[], double[]) - Method in interface smile.validation.RegressionMeasure
-
Returns an index to measure the quality of regression.
- measure(double[], double[]) - Method in class smile.validation.RMSE
-
- measure(double[], double[]) - Method in class smile.validation.RSS
-
- measure(int[], int[]) - Method in class smile.validation.Sensitivity
-
- measure(int[], int[]) - Method in class smile.validation.Specificity
-
- MEC<T> - Class in smile.clustering
-
Non-parametric Minimum Conditional Entropy Clustering.
- MEC(double, double, RNNSearch<T, T>, int, int[]) - Constructor for class smile.clustering.MEC
-
Constructor.
- merge() - Method in class smile.base.cart.InternalNode
-
- merge() - Method in class smile.base.cart.LeafNode
-
- merge() - Method in interface smile.base.cart.Node
-
Try to merge the children nodes and return a leaf node.
- merge(int, int) - Method in class smile.clustering.linkage.CompleteLinkage
-
- merge(int, int) - Method in class smile.clustering.linkage.Linkage
-
Merge two clusters into one and update the proximity matrix.
- merge(int, int) - Method in class smile.clustering.linkage.SingleLinkage
-
- merge(int, int) - Method in class smile.clustering.linkage.UPGMALinkage
-
- merge(int, int) - Method in class smile.clustering.linkage.UPGMCLinkage
-
- merge(int, int) - Method in class smile.clustering.linkage.WardLinkage
-
- merge(int, int) - Method in class smile.clustering.linkage.WPGMALinkage
-
- merge(int, int) - Method in class smile.clustering.linkage.WPGMCLinkage
-
- merge(RandomForest) - Method in class smile.regression.RandomForest
-
Merges together two random forests and returns a new forest consisting of trees from both input forests.
- min(int[], int[]) - Static method in class smile.validation.AdjustedMutualInformation
-
Calculates the adjusted mutual information of (I(y1, y2) - E(MI)) / (min(H(y1), H(y2)) - E(MI)).
- min(int[], int[]) - Static method in class smile.validation.NormalizedMutualInformation
-
Calculates the normalized mutual information of I(y1, y2) / min(H(y1), H(y2)).
- minPts - Variable in class smile.clustering.DBSCAN
-
The minimum number of points required to form a cluster
- minSupport() - Method in class smile.association.FPTree
-
Returns the required minimum support of item sets in terms
of frequency.
- MissingValueImputation - Interface in smile.imputation
-
Interface to impute missing values in the data.
- MissingValueImputationException - Exception in smile.imputation
-
Exception of missing value imputation.
- MissingValueImputationException() - Constructor for exception smile.imputation.MissingValueImputationException
-
Constructor.
- MissingValueImputationException(String) - Constructor for exception smile.imputation.MissingValueImputationException
-
Constructor.
- mle(int, OutputFunction) - Static method in class smile.base.mlp.Layer
-
Returns an output layer with (log-)likelihood cost function.
- MLP - Class in smile.classification
-
Fully connected multilayer perceptron neural network for classification.
- MLP(int, LayerBuilder...) - Constructor for class smile.classification.MLP
-
Constructor.
- MLP(IntSet, int, LayerBuilder...) - Constructor for class smile.classification.MLP
-
Constructor.
- MLP - Class in smile.regression
-
Fully connected multilayer perceptron neural network for regression.
- MLP(int, LayerBuilder...) - Constructor for class smile.regression.MLP
-
Constructor.
- model - Variable in class smile.sequence.CRFLabeler
-
The CRF model.
- model - Variable in class smile.sequence.HMMLabeler
-
The HMM model.
- MPLSH<E> - Class in smile.neighbor
-
Multi-Probe Locality-Sensitive Hashing.
- MPLSH(int, int, int, double) - Constructor for class smile.neighbor.MPLSH
-
Constructor.
- MPLSH(int, int, int, double, int) - Constructor for class smile.neighbor.MPLSH
-
Constructor.
- mse(int, OutputFunction) - Static method in class smile.base.mlp.Layer
-
Returns an output layer with mean squared error cost function.
- MSE - Class in smile.validation
-
Mean squared error.
- MSE() - Constructor for class smile.validation.MSE
-
- mtry - Variable in class smile.base.cart.CART
-
The number of input variables to be used to determine the decision
at a node of the tree.
- MultilayerPerceptron - Class in smile.base.mlp
-
Fully connected multilayer perceptron neural network.
- MultilayerPerceptron(Layer...) - Constructor for class smile.base.mlp.MultilayerPerceptron
-
Constructor.
- MultiProbeHash - Class in smile.neighbor.lsh
-
The hash function for data in Euclidean spaces.
- MultiProbeHash(int, int, double, int) - Constructor for class smile.neighbor.lsh.MultiProbeHash
-
Constructor.
- MultiProbeSample - Class in smile.neighbor.lsh
-
Training sample for MPLSH.
- MultiProbeSample(double[], List<double[]>) - Constructor for class smile.neighbor.lsh.MultiProbeSample
-
Constructor.
- MutableLSH<E> - Class in smile.neighbor
-
Mutable LSH.
- MutableLSH(int, int, int, double) - Constructor for class smile.neighbor.MutableLSH
-
Constructor.
- mutate() - Method in class smile.gap.BitString
-
- mutate() - Method in interface smile.gap.Chromosome
-
For genetic algorithms, this method mutates the chromosome randomly.
- MutualInformation - Class in smile.validation
-
Mutual Information for comparing clustering.
- MutualInformation() - Constructor for class smile.validation.MutualInformation
-
- of(int, Supplier<Stream<int[]>>) - Static method in class smile.association.FPTree
-
One-step construction of FP-tree if the database is available as stream.
- of(double, Supplier<Stream<int[]>>) - Static method in class smile.association.FPTree
-
One-step construction of FP-tree if the database is available as stream.
- of(int, int[][]) - Static method in class smile.association.FPTree
-
One-step construction of FP-tree if the database is available in main memory.
- of(double, int[][]) - Static method in class smile.association.FPTree
-
One-step construction of FP-tree if the database is available in main memory.
- of(T[], RadialBasisFunction, Metric<T>) - Static method in class smile.base.rbf.RBF
-
Makes a set of RBF neurons.
- of(T[], RadialBasisFunction[], Metric<T>) - Static method in class smile.base.rbf.RBF
-
Makes a set of RBF neurons.
- of(KernelMachine<double[]>) - Static method in class smile.base.svm.LinearKernelMachine
-
Creates a linear kernel machine.
- of(double[][]) - Static method in class smile.clustering.linkage.CompleteLinkage
-
Given a set of data, computes the proximity and then the linkage.
- of(T[], Distance<T>) - Static method in class smile.clustering.linkage.CompleteLinkage
-
Given a set of data, computes the proximity and then the linkage.
- of(double[][]) - Static method in class smile.clustering.linkage.SingleLinkage
-
Given a set of data, computes the proximity and then the linkage.
- of(T[], Distance<T>) - Static method in class smile.clustering.linkage.SingleLinkage
-
Given a set of data, computes the proximity and then the linkage.
- of(double[][]) - Static method in class smile.clustering.linkage.UPGMALinkage
-
Given a set of data, computes the proximity and then the linkage.
- of(T[], Distance<T>) - Static method in class smile.clustering.linkage.UPGMALinkage
-
Given a set of data, computes the proximity and then the linkage.
- of(double[][]) - Static method in class smile.clustering.linkage.UPGMCLinkage
-
Given a set of data, computes the proximity and then the linkage.
- of(T[], Distance<T>) - Static method in class smile.clustering.linkage.UPGMCLinkage
-
Given a set of data, computes the proximity and then the linkage.
- of(double[][]) - Static method in class smile.clustering.linkage.WardLinkage
-
Given a set of data, computes the proximity and then the linkage.
- of(T[], Distance<T>) - Static method in class smile.clustering.linkage.WardLinkage
-
Given a set of data, computes the proximity and then the linkage.
- of(double[][]) - Static method in class smile.clustering.linkage.WPGMALinkage
-
Given a set of data, computes the proximity and then the linkage.
- of(T[], Distance<T>) - Static method in class smile.clustering.linkage.WPGMALinkage
-
Given a set of data, computes the proximity and then the linkage.
- of(double[][]) - Static method in class smile.clustering.linkage.WPGMCLinkage
-
Given a set of data, computes the proximity and then the linkage.
- of(T[], Distance<T>) - Static method in class smile.clustering.linkage.WPGMCLinkage
-
Given a set of data, computes the proximity and then the linkage.
- of(double[][], int[]) - Static method in class smile.feature.SignalNoiseRatio
-
Univariate feature ranking.
- of(double[][], int[]) - Static method in class smile.feature.SumSquaresRatio
-
Univariate feature ranking.
- of(double[][], int) - Static method in class smile.manifold.IsoMap
-
Runs the C-Isomap algorithm.
- of(double[][], int, int, boolean) - Static method in class smile.manifold.IsoMap
-
Runs the Isomap algorithm.
- of(double[][], int) - Static method in class smile.manifold.LaplacianEigenmap
-
Laplacian Eigenmaps with discrete weights.
- of(double[][], int, int, double) - Static method in class smile.manifold.LaplacianEigenmap
-
Laplacian Eigenmap with Gaussian kernel.
- of(double[][], int) - Static method in class smile.manifold.LLE
-
Runs the LLE algorithm.
- of(double[][], int, int) - Static method in class smile.manifold.LLE
-
Runs the LLE algorithm.
- of(double[][]) - Static method in class smile.mds.IsotonicMDS
-
Fits Kruskal's non-metric MDS with default k = 2, tolerance = 1E-4 and maxIter = 200.
- of(double[][], int) - Static method in class smile.mds.IsotonicMDS
-
Fits Kruskal's non-metric MDS.
- of(double[][], Properties) - Static method in class smile.mds.IsotonicMDS
-
Fits Kruskal's non-metric MDS.
- of(double[][], int, double, int) - Static method in class smile.mds.IsotonicMDS
-
Fits Kruskal's non-metric MDS.
- of(double[][], double[][], double, int) - Static method in class smile.mds.IsotonicMDS
-
Fits Kruskal's non-metric MDS.
- of(double[][]) - Static method in class smile.mds.MDS
-
Fits the classical multidimensional scaling.
- of(double[][], int) - Static method in class smile.mds.MDS
-
Fits the classical multidimensional scaling.
- of(double[][], Properties) - Static method in class smile.mds.MDS
-
Fits the classical multidimensional scaling.
- of(double[][], int, boolean) - Static method in class smile.mds.MDS
-
Fits the classical multidimensional scaling.
- of(double[][]) - Static method in class smile.mds.SammonMapping
-
Fits Sammon's mapping with default k = 2, lambda = 0.2, tolerance = 1E-4 and maxIter = 100.
- of(double[][], int) - Static method in class smile.mds.SammonMapping
-
Fits Sammon's mapping.
- of(double[][], Properties) - Static method in class smile.mds.SammonMapping
-
Fits Sammon's mapping.
- of(double[][], int, double, double, double, int) - Static method in class smile.mds.SammonMapping
-
Fits Sammon's mapping.
- of(double[][], double[][], double, double, double, int) - Static method in class smile.mds.SammonMapping
-
Fits Sammon's mapping.
- of(byte[][]) - Static method in interface smile.neighbor.lsh.SimHash
-
Returns the simhash for a set of generic features (represented as byte[]).
- of(T, int, double) - Static method in class smile.neighbor.Neighbor
-
Creates a neighbor object, of which key and object are the same.
- of(int, int) - Static method in class smile.projection.RandomProjection
-
Generates a non-sparse random projection.
- of(int[], int[]) - Static method in class smile.validation.Accuracy
-
Calculates the classification accuracy.
- of(int[], int[]) - Static method in class smile.validation.AdjustedRandIndex
-
Calculates the adjusted rand index.
- of(int[], double[]) - Static method in class smile.validation.AUC
-
Caulculate AUC for binary classifier.
- of(int[], int[]) - Static method in class smile.validation.ConfusionMatrix
-
Creates the confusion matrix.
- of(int[], int[]) - Static method in class smile.validation.Error
-
Calculates the number of errors.
- of(int[], int[]) - Static method in class smile.validation.Fallout
-
Calculates the false alarm rate.
- of(int[], int[]) - Static method in class smile.validation.FDR
-
Calculates the false discovery rate.
- of(int[], int[]) - Static method in class smile.validation.FMeasure
-
Calculates the F1 score.
- of(int[], int[]) - Static method in class smile.validation.MCC
-
Calculates Matthews correlation coefficient.
- of(double[], double[]) - Static method in class smile.validation.MeanAbsoluteDeviation
-
Calculates the mean absolute deviation error.
- of(double[], double[]) - Static method in class smile.validation.MSE
-
Calculates the mean squared error.
- of(int[], int[]) - Static method in class smile.validation.MutualInformation
-
Calculates the mutual information.
- of(int[], int[]) - Static method in class smile.validation.Precision
-
Calculates the precision.
- of(int[], int[]) - Static method in class smile.validation.RandIndex
-
Calculates the rand index.
- of(int[], int[]) - Static method in class smile.validation.Recall
-
Calculates the recall/sensitivity.
- of(double[], double[]) - Static method in class smile.validation.RMSE
-
Calculates the root mean squared error.
- of(double[], double[]) - Static method in class smile.validation.RSS
-
Calculates the residual sum of squares.
- of(int[], int[]) - Static method in class smile.validation.Sensitivity
-
Calculates the sensitivity.
- of(int[], int[]) - Static method in class smile.validation.Specificity
-
Calculates the specificity.
- of(int, int, int) - Method in interface smile.vq.Neighborhood
-
Returns the changing rate of neighborhood at a given iteration.
- OLS - Class in smile.regression
-
Ordinary least squares.
- OLS() - Constructor for class smile.regression.OLS
-
- OneVersusOne<T> - Class in smile.classification
-
One-vs-one strategy for reducing the problem of
multiclass classification to multiple binary classification problems.
- OneVersusOne(Classifier<T>[][], PlattScaling[][]) - Constructor for class smile.classification.OneVersusOne
-
Constructor.
- OneVersusOne(Classifier<T>[][], PlattScaling[][], IntSet) - Constructor for class smile.classification.OneVersusOne
-
Constructor.
- OneVersusRest<T> - Class in smile.classification
-
One-vs-rest (or one-vs-all) strategy for reducing the problem of
multiclass classification to multiple binary classification problems.
- OneVersusRest(Classifier<T>[], PlattScaling[]) - Constructor for class smile.classification.OneVersusRest
-
Constructor.
- OneVersusRest(Classifier<T>[], PlattScaling[], IntSet) - Constructor for class smile.classification.OneVersusRest
-
Constructor.
- OnlineClassifier<T> - Interface in smile.classification
-
Classifier with online learning capability.
- OnlineRegression<T> - Interface in smile.regression
-
Regression model with online learning capability.
- order - Variable in class smile.base.cart.CART
-
An index of training values.
- order(DataFrame) - Static method in class smile.base.cart.CART
-
Returns the index of ordered samples for each ordinal column.
- ordinal - Variable in class smile.sequence.HMMLabeler
-
The lambda returns the ordinal numbers of symbols.
- OrdinalNode - Class in smile.base.cart
-
A node with a ordinal split variable (real-valued or ordinal categorical value).
- OrdinalNode(int, double, double, double, Node, Node) - Constructor for class smile.base.cart.OrdinalNode
-
Constructor.
- OrdinalSplit - Class in smile.base.cart
-
The data about of a potential split for a leaf node.
- OrdinalSplit(LeafNode, int, double, double, int, int, int, int, IntPredicate) - Constructor for class smile.base.cart.OrdinalSplit
-
Constructor.
- OUTLIER - Static variable in class smile.clustering.PartitionClustering
-
Cluster label for outliers or noises.
- OUTLIER - Static variable in interface smile.vq.VectorQuantizer
-
The label for outliers or noises.
- output() - Method in class smile.base.cart.DecisionNode
-
Returns the predicted value.
- output(int[], int[]) - Method in interface smile.base.cart.Loss
-
Calculate the node output.
- output() - Method in class smile.base.cart.RegressionNode
-
Returns the predicted value.
- output - Variable in class smile.base.mlp.Layer
-
The output vector.
- output() - Method in class smile.base.mlp.Layer
-
Returns the output vector.
- output - Variable in class smile.base.mlp.MultilayerPerceptron
-
The output layer.
- OutputFunction - Enum in smile.base.mlp
-
The output function of neural networks.
- OutputLayer - Class in smile.base.mlp
-
The output layer in the neural network.
- OutputLayer(int, int, OutputFunction, Cost) - Constructor for class smile.base.mlp.OutputLayer
-
Constructor.
- p - Variable in class smile.base.mlp.Layer
-
The number of input variables.
- p - Variable in class smile.base.mlp.MultilayerPerceptron
-
The dimensionality of input data.
- p(int[], int[]) - Method in class smile.sequence.HMM
-
Returns the joint probability of an observation sequence along a state
sequence given this HMM.
- p(int[]) - Method in class smile.sequence.HMM
-
Returns the probability of an observation sequence given this HMM.
- p(T[], int[]) - Method in class smile.sequence.HMMLabeler
-
Returns the joint probability of an observation sequence along a state
sequence.
- p(T[]) - Method in class smile.sequence.HMMLabeler
-
Returns the probability of an observation sequence.
- partition(int) - Method in class smile.clustering.HierarchicalClustering
-
Cuts a tree into several groups by specifying the desired number.
- partition(double) - Method in class smile.clustering.HierarchicalClustering
-
Cuts a tree into several groups by specifying the cut height.
- PartitionClustering - Class in smile.clustering
-
Partition clustering.
- PartitionClustering(int, int[]) - Constructor for class smile.clustering.PartitionClustering
-
Constructor.
- PCA - Class in smile.projection
-
Principal component analysis.
- PCA(double[], double[], DenseMatrix) - Constructor for class smile.projection.PCA
-
Constructor.
- PlattScaling - Class in smile.classification
-
Platt scaling or Platt calibration is a way of transforming the outputs
of a classification model into a probability distribution over classes.
- PlattScaling(double, double) - Constructor for class smile.classification.PlattScaling
-
Constructor.
- points() - Method in class smile.neighbor.lsh.Bucket
-
Returns the points in the bucket.
- population() - Method in class smile.gap.GeneticAlgorithm
-
Returns the population of current generation.
- posteriori(double[]) - Method in class smile.base.cart.DecisionNode
-
Returns the class probability.
- posteriori(int[], double[]) - Static method in class smile.base.cart.DecisionNode
-
Returns the class probability.
- PosterioriModel - Class in smile.neighbor.lsh
-
Pre-computed posteriori probabilities for generating multiple probes.
- PosterioriModel(MultiProbeHash, MultiProbeSample[], int, double) - Constructor for class smile.neighbor.lsh.PosterioriModel
-
Constructor.
- PPCA - Class in smile.projection
-
Probabilistic principal component analysis.
- PPCA(double, double[], DenseMatrix, DenseMatrix) - Constructor for class smile.projection.PPCA
-
Constructor.
- pr - Variable in class smile.neighbor.lsh.PrH
-
The probability
- Precision - Class in smile.validation
-
The precision or positive predictive value (PPV) is ratio of true positives
to combined true and false positives, which is different from sensitivity.
- Precision() - Constructor for class smile.validation.Precision
-
- predicate() - Method in class smile.base.cart.NominalSplit
-
- predicate() - Method in class smile.base.cart.OrdinalSplit
-
- predicate() - Method in class smile.base.cart.Split
-
Returns the lambda that tests on the split feature.
- predict(Tuple) - Method in class smile.base.cart.InternalNode
-
Evaluates the tree over an instance.
- predict(Tuple) - Method in class smile.base.cart.LeafNode
-
- predict(Tuple) - Method in interface smile.base.cart.Node
-
Evaluate the tree over an instance.
- predict(Tuple) - Method in class smile.base.cart.NominalNode
-
- predict(Tuple) - Method in class smile.base.cart.OrdinalNode
-
- predict(Tuple) - Method in class smile.classification.AdaBoost
-
- predict(Tuple, double[]) - Method in class smile.classification.AdaBoost
-
Predicts the class label of an instance and also calculate a posteriori
probabilities.
- predict(T) - Method in interface smile.classification.Classifier
-
Predicts the class label of an instance.
- predict(T[]) - Method in interface smile.classification.Classifier
-
Predicts the class labels of an array of instances.
- predict(Tuple) - Method in interface smile.classification.DataFrameClassifier
-
Predicts the class label of an instance.
- predict(DataFrame) - Method in interface smile.classification.DataFrameClassifier
-
Predicts the class labels of a data frame.
- predict(Tuple) - Method in class smile.classification.DecisionTree
-
- predict(Tuple, double[]) - Method in class smile.classification.DecisionTree
-
Predicts the class label of an instance and also calculate a posteriori
probabilities.
- predict(int[]) - Method in class smile.classification.DiscreteNaiveBayes
-
Predict the class of an instance.
- predict(int[], double[]) - Method in class smile.classification.DiscreteNaiveBayes
-
Predict the class of an instance.
- predict(SparseArray) - Method in class smile.classification.DiscreteNaiveBayes
-
Predict the class of an instance.
- predict(SparseArray, double[]) - Method in class smile.classification.DiscreteNaiveBayes
-
Predict the class of an instance.
- predict(double[]) - Method in class smile.classification.FLD
-
- predict(Tuple) - Method in class smile.classification.GradientTreeBoost
-
- predict(Tuple, double[]) - Method in class smile.classification.GradientTreeBoost
-
- predict(double) - Method in class smile.classification.IsotonicRegressionScaling
-
Returns the posterior probability estimate P(y = 1 | x).
- predict(T) - Method in class smile.classification.KNN
-
- predict(T, double[]) - Method in class smile.classification.KNN
-
- predict(double[]) - Method in class smile.classification.LDA
-
- predict(double[], double[]) - Method in class smile.classification.LDA
-
- predict(double[]) - Method in class smile.classification.LogisticRegression
-
- predict(double[], double[]) - Method in class smile.classification.LogisticRegression
-
- predict(int[]) - Method in class smile.classification.Maxent
-
- predict(int[], double[]) - Method in class smile.classification.Maxent
-
- predict(double[], double[]) - Method in class smile.classification.MLP
-
- predict(double[]) - Method in class smile.classification.MLP
-
- predict(double[]) - Method in class smile.classification.NaiveBayes
-
Predict the class of an instance.
- predict(double[], double[]) - Method in class smile.classification.NaiveBayes
-
Predict the class of an instance.
- predict(T) - Method in class smile.classification.OneVersusOne
-
Prediction is based on voting.
- predict(T, double[]) - Method in class smile.classification.OneVersusOne
-
Prediction is based posteriori probability estimation.
- predict(T) - Method in class smile.classification.OneVersusRest
-
- predict(T, double[]) - Method in class smile.classification.OneVersusRest
-
- predict(double[]) - Method in class smile.classification.QDA
-
- predict(double[], double[]) - Method in class smile.classification.QDA
-
- predict(Tuple) - Method in class smile.classification.RandomForest
-
- predict(Tuple, double[]) - Method in class smile.classification.RandomForest
-
- predict(T) - Method in class smile.classification.RBFNetwork
-
- predict(T, double[]) - Method in interface smile.classification.SoftClassifier
-
Predicts the class label of an instance and also calculate a posteriori
probabilities.
- predict(T) - Method in class smile.classification.SVM
-
- predict(U) - Method in class smile.clustering.CentroidClustering
-
Classifies a new observation.
- predict(T) - Method in class smile.clustering.DBSCAN
-
Classifies a new observation.
- predict(double[]) - Method in class smile.clustering.DENCLUE
-
Classifies a new observation.
- predict(T) - Method in class smile.clustering.MEC
-
Cluster a new instance.
- predict(Tuple) - Method in interface smile.regression.DataFrameRegression
-
Predicts the dependent variable of a tuple instance.
- predict(DataFrame) - Method in interface smile.regression.DataFrameRegression
-
Predicts the dependent variables of a data frame.
- predict(Tuple) - Method in class smile.regression.GradientTreeBoost
-
- predict(T) - Method in class smile.regression.KernelMachine
-
- predict(double[]) - Method in class smile.regression.LinearModel
-
- predict(Tuple) - Method in class smile.regression.LinearModel
-
- predict(DataFrame) - Method in class smile.regression.LinearModel
-
- predict(double[]) - Method in class smile.regression.MLP
-
- predict(Tuple) - Method in class smile.regression.RandomForest
-
- predict(T) - Method in class smile.regression.RBFNetwork
-
- predict(T) - Method in interface smile.regression.Regression
-
Predicts the dependent variable of an instance.
- predict(T[]) - Method in interface smile.regression.Regression
-
Predicts the dependent variables of an array of instances.
- predict(Tuple) - Method in class smile.regression.RegressionTree
-
- predict(Tuple[]) - Method in class smile.sequence.CRF
-
Returns the most likely label sequence given the feature sequence by the
forward-backward algorithm.
- predict(T[]) - Method in class smile.sequence.CRFLabeler
-
Returns the most likely label sequence given the feature sequence by the
forward-backward algorithm.
- predict(int[]) - Method in class smile.sequence.HMM
-
Returns the most likely state sequence given the observation sequence by
the Viterbi algorithm, which maximizes the probability of
P(I | O, HMM)
.
- predict(T[]) - Method in class smile.sequence.HMMLabeler
-
Returns the most likely state sequence given the observation sequence by
the Viterbi algorithm, which maximizes the probability of
P(I | O, HMM)
.
- predict(T[]) - Method in interface smile.sequence.SequenceLabeler
-
Predicts the sequence labels.
- predictors(Tuple) - Method in class smile.base.cart.CART
-
Returns the predictors by the model formula if it is not null.
- PrH - Class in smile.neighbor.lsh
-
Probability for given query object and hash function.
- PrH(int, double) - Constructor for class smile.neighbor.lsh.PrH
-
Constructor.
- prh - Variable in class smile.neighbor.lsh.PrZ
-
The n_i probabilities for h_m hash function,
where n_i = u_i_max - u_i_min + 1.
- priori - Variable in class smile.classification.ClassLabels
-
The estimated priori probabilities.
- priori() - Method in class smile.classification.DiscreteNaiveBayes
-
Returns a priori probabilities.
- priori() - Method in class smile.classification.LDA
-
Returns a priori probabilities.
- priori() - Method in class smile.classification.NaiveBayes
-
Returns a priori probabilities.
- priori() - Method in class smile.classification.QDA
-
Returns a priori probabilities.
- Probe - Class in smile.neighbor.lsh
-
Probe to check for nearest neighbors.
- Probe(int[]) - Constructor for class smile.neighbor.lsh.Probe
-
Constructor.
- project(double[]) - Method in class smile.classification.FLD
-
- project(double[][]) - Method in class smile.classification.FLD
-
- project(T) - Method in class smile.projection.KPCA
-
- project(T[]) - Method in class smile.projection.KPCA
-
- project(double[]) - Method in interface smile.projection.LinearProjection
-
- project(double[][]) - Method in interface smile.projection.LinearProjection
-
- project(double[]) - Method in class smile.projection.PCA
-
- project(double[][]) - Method in class smile.projection.PCA
-
- project(double[]) - Method in class smile.projection.PPCA
-
- project(double[][]) - Method in class smile.projection.PPCA
-
- project(T) - Method in interface smile.projection.Projection
-
Project a data point to the feature space.
- project(T[]) - Method in interface smile.projection.Projection
-
Project a set of data to the feature space.
- Projection<T> - Interface in smile.projection
-
A projection is a kind of feature extraction technique that transforms data
from the input space to a feature space, linearly or nonlinearly.
- propagate(double[]) - Method in class smile.base.mlp.Layer
-
Propagates signals from a lower layer to this layer.
- propagate(double[]) - Method in class smile.base.mlp.MultilayerPerceptron
-
Propagates the signals through the neural network.
- proportion - Variable in class smile.mds.MDS
-
The proportion of variance contained in each principal component.
- proximity(double[][]) - Static method in class smile.clustering.linkage.Linkage
-
Calculate the proximity matrix (linearized in column major) with Euclidean distance.
- proximity(T[], Distance<T>) - Static method in class smile.clustering.linkage.Linkage
-
Calculate the proximity matrix (linearized in column major).
- prune(DataFrame) - Method in class smile.classification.DecisionTree
-
Returns a new decision tree by reduced error pruning.
- prune(DataFrame) - Method in class smile.classification.RandomForest
-
Returns a new random forest by reduced error pruning.
- PrZ - Class in smile.neighbor.lsh
-
Probability list of all buckets for given query object.
- PrZ(int, PrH[]) - Constructor for class smile.neighbor.lsh.PrZ
-
Constructor.
- put(double[], E) - Method in class smile.neighbor.LSH
-
Insert an item into the hash table.
- put(double[], E) - Method in class smile.neighbor.MutableLSH
-
- put(K, V) - Method in class smile.neighbor.SNLSH
-
Adds a new item.
- pvalue() - Method in class smile.regression.LinearModel
-
Returns the p-value of goodness-of-fit test.
- radius - Variable in class smile.clustering.DBSCAN
-
The neighborhood radius.
- radius - Variable in class smile.clustering.MEC
-
The range of neighborhood.
- RandIndex - Class in smile.validation
-
Rand Index.
- RandIndex() - Constructor for class smile.validation.RandIndex
-
- random(int, double) - Static method in class smile.sampling.Bagging
-
Random sampling.
- RandomForest - Class in smile.classification
-
Random forest for classification.
- RandomForest(Formula, int, List<RandomForest.Tree>, double, double[]) - Constructor for class smile.classification.RandomForest
-
Constructor.
- RandomForest(Formula, int, List<RandomForest.Tree>, double, double[], IntSet) - Constructor for class smile.classification.RandomForest
-
Constructor.
- RandomForest - Class in smile.regression
-
Random forest for regression.
- RandomForest(Formula, RegressionTree[], double, double[]) - Constructor for class smile.regression.RandomForest
-
Constructor.
- RandomProjection - Class in smile.projection
-
Random projection is a promising dimensionality reduction technique for
learning mixtures of Gaussians.
- RandomProjection(DenseMatrix) - Constructor for class smile.projection.RandomProjection
-
Constructor.
- range(E, double, List<Neighbor<E, E>>) - Method in class smile.neighbor.BKTree
-
- range(E, int, List<Neighbor<E, E>>) - Method in class smile.neighbor.BKTree
-
Search the neighbors in the given radius of query object, i.e.
- range(E, double, List<Neighbor<E, E>>) - Method in class smile.neighbor.CoverTree
-
- range(double[], double, List<Neighbor<double[], E>>) - Method in class smile.neighbor.KDTree
-
- range(T, double, List<Neighbor<T, T>>) - Method in class smile.neighbor.LinearSearch
-
- range(double[], double, List<Neighbor<double[], E>>) - Method in class smile.neighbor.LSH
-
- range(double[], double, List<Neighbor<double[], E>>) - Method in class smile.neighbor.MPLSH
-
- range(double[], double, List<Neighbor<double[], E>>, double, int) - Method in class smile.neighbor.MPLSH
-
Search the neighbors in the given radius of query object, i.e.
- range(K, double, List<Neighbor<K, V>>) - Method in interface smile.neighbor.RNNSearch
-
Search the neighbors in the given radius of query object, i.e.
- range(K, double, List<Neighbor<K, V>>) - Method in class smile.neighbor.SNLSH
-
- rank(double[][], int[]) - Method in interface smile.feature.FeatureRanking
-
Univariate feature ranking.
- rank(double[][], int[]) - Method in class smile.feature.SignalNoiseRatio
-
- rank(double[][], int[]) - Method in class smile.feature.SumSquaresRatio
-
- Rank() - Static method in interface smile.gap.Selection
-
Rank Selection.
- RBF<T> - Class in smile.base.rbf
-
A neuron in radial basis function network.
- RBF(T, RadialBasisFunction, Metric<T>) - Constructor for class smile.base.rbf.RBF
-
Constructor.
- RBFNetwork<T> - Class in smile.classification
-
Radial basis function networks.
- RBFNetwork(int, RBF<T>[], DenseMatrix, boolean) - Constructor for class smile.classification.RBFNetwork
-
Constructor.
- RBFNetwork(int, RBF<T>[], DenseMatrix, boolean, IntSet) - Constructor for class smile.classification.RBFNetwork
-
Constructor.
- RBFNetwork<T> - Class in smile.regression
-
Radial basis function network.
- RBFNetwork(RBF<T>[], double[], boolean) - Constructor for class smile.regression.RBFNetwork
-
Constructor.
- RDA - Class in smile.classification
-
Regularized discriminant analysis.
- RDA(double[], double[][], double[][], DenseMatrix[]) - Constructor for class smile.classification.RDA
-
Constructor.
- RDA(double[], double[][], double[][], DenseMatrix[], IntSet) - Constructor for class smile.classification.RDA
-
Constructor.
- Recall - Class in smile.validation
-
In information retrieval area, sensitivity is called recall.
- Recall() - Constructor for class smile.validation.Recall
-
- rectifier() - Static method in interface smile.base.mlp.ActivationFunction
-
The rectifier activation function max(0, x).
- rectifier(int) - Static method in class smile.base.mlp.Layer
-
Returns a hidden layer with rectified linear activation function.
- Regression<T> - Interface in smile.regression
-
Regression analysis includes any techniques for modeling and analyzing
the relationship between a dependent variable and one or more independent
variables.
- regression(T[], double[], BiFunction<T[], double[], Regression<T>>) - Method in class smile.validation.Bootstrap
-
Runs bootstrap tests.
- regression(Formula, DataFrame, BiFunction<Formula, DataFrame, DataFrameRegression>) - Method in class smile.validation.Bootstrap
-
Runs bootstrap tests.
- regression(int, T[], double[], BiFunction<T[], double[], Regression<T>>) - Static method in class smile.validation.Bootstrap
-
Runs bootstrap tests.
- regression(int, Formula, DataFrame, BiFunction<Formula, DataFrame, DataFrameRegression>) - Static method in class smile.validation.Bootstrap
-
Runs bootstrap tests.
- regression(T[], double[], BiFunction<T[], double[], Regression<T>>) - Method in class smile.validation.CrossValidation
-
Runs cross validation tests.
- regression(Formula, DataFrame, BiFunction<Formula, DataFrame, DataFrameRegression>) - Method in class smile.validation.CrossValidation
-
Runs cross validation tests.
- regression(int, T[], double[], BiFunction<T[], double[], Regression<T>>) - Static method in class smile.validation.CrossValidation
-
Runs cross validation tests.
- regression(int, Formula, DataFrame, BiFunction<Formula, DataFrame, DataFrameRegression>) - Static method in class smile.validation.CrossValidation
-
Runs cross validation tests.
- regression(T[], double[], BiFunction<T[], double[], Regression<T>>) - Method in class smile.validation.GroupKFold
-
Runs cross validation tests.
- regression(DataFrame, Function<DataFrame, DataFrameRegression>) - Method in class smile.validation.GroupKFold
-
Runs cross validation tests.
- regression(T[], double[], BiFunction<T[], double[], Regression<T>>) - Static method in class smile.validation.LOOCV
-
Runs leave-one-out cross validation tests.
- regression(Formula, DataFrame, BiFunction<Formula, DataFrame, DataFrameRegression>) - Static method in class smile.validation.LOOCV
-
Runs leave-one-out cross validation tests.
- RegressionMeasure - Interface in smile.validation
-
An abstract interface to measure the regression performance.
- RegressionNode - Class in smile.base.cart
-
A leaf node in regression tree.
- RegressionNode(int, double, double, double) - Constructor for class smile.base.cart.RegressionNode
-
Constructor.
- RegressionTree - Class in smile.regression
-
Decision tree for regression.
- RegressionTree(DataFrame, Loss, StructField, int, int, int, int, int[], int[][]) - Constructor for class smile.regression.RegressionTree
-
Constructor.
- remove(int) - Method in class smile.neighbor.lsh.Bucket
-
Removes a point from bucket.
- remove(double[], E) - Method in class smile.neighbor.MutableLSH
-
Remove an entry from the hash table.
- removeChild(Concept) - Method in class smile.taxonomy.Concept
-
Remove a child to this node
- removeEdge(Neuron) - Method in class smile.vq.hebb.Neuron
-
Removes an edge.
- removeKeyword(String) - Method in class smile.taxonomy.Concept
-
Remove a keyword from the concept synset.
- replace(Node, Node) - Method in class smile.base.cart.InternalNode
-
Returns a new internal node with children replaced.
- replace(Node, Node) - Method in class smile.base.cart.NominalNode
-
- replace(Node, Node) - Method in class smile.base.cart.OrdinalNode
-
- residual() - Method in interface smile.base.cart.Loss
-
Returns the residual vector.
- residuals() - Method in class smile.regression.LinearModel
-
Returns the residuals, that is response minus fitted values.
- response - Variable in class smile.base.cart.CART
-
The schema of response variable.
- response() - Method in interface smile.base.cart.Loss
-
Returns the response variable for next iteration.
- RidgeRegression - Class in smile.regression
-
Ridge Regression.
- RidgeRegression() - Constructor for class smile.regression.RidgeRegression
-
- RMSE - Class in smile.validation
-
Root mean squared error.
- RMSE() - Constructor for class smile.validation.RMSE
-
- RNNSearch<K,V> - Interface in smile.neighbor
-
A range nearest neighbor search retrieves the nearest neighbors to a query
in a range.
- RobustStandardizer - Class in smile.feature
-
Robustly standardizes numeric feature by subtracting
the median and dividing by the IQR.
- RobustStandardizer(StructType, double[], double[]) - Constructor for class smile.feature.RobustStandardizer
-
Constructor.
- root - Variable in class smile.base.cart.CART
-
The root of decision tree.
- root() - Method in class smile.base.cart.CART
-
Returs the root node.
- RouletteWheel() - Static method in interface smile.gap.Selection
-
Roulette Wheel Selection, also called fitness proportionate selection.
- RSquared() - Method in class smile.regression.LinearModel
-
Returns R2 statistic.
- RSS() - Method in class smile.regression.LinearModel
-
Returns the residual sum of squares.
- RSS - Class in smile.validation
-
Residual sum of squares.
- RSS() - Constructor for class smile.validation.RSS
-
- run(int, Supplier<T>) - Static method in class smile.clustering.PartitionClustering
-
Runs a clustering algorithm multiple times and return the best one
(e.g.
- SammonMapping - Class in smile.mds
-
The Sammon's mapping is an iterative technique for making interpoint
distances in the low-dimensional projection as close as possible to the
interpoint distances in the high-dimensional object.
- SammonMapping(double, double[][]) - Constructor for class smile.mds.SammonMapping
-
Constructor.
- samples - Variable in class smile.base.cart.CART
-
The samples for training this node.
- samples - Variable in class smile.sampling.Bagging
-
The samples.
- scale() - Method in class smile.classification.ClassLabels
-
Returns the nominal scale for the class labels.
- scale(double) - Method in class smile.classification.PlattScaling
-
Returns the posterior probability estimate P(y = 1 | x).
- ScaledRouletteWheel() - Static method in interface smile.gap.Selection
-
Scaled Roulette Wheel Selection.
- Scaler - Class in smile.feature
-
Scales all numeric variables into the range [0, 1].
- Scaler(StructType, double[], double[]) - Constructor for class smile.feature.Scaler
-
Constructor.
- schema - Variable in class smile.base.cart.CART
-
The schema of data.
- schema() - Method in class smile.classification.AdaBoost
-
- schema() - Method in interface smile.classification.DataFrameClassifier
-
Returns the design matrix schema.
- schema() - Method in class smile.classification.DecisionTree
-
- schema() - Method in class smile.classification.GradientTreeBoost
-
- schema() - Method in class smile.classification.RandomForest
-
- schema - Variable in class smile.feature.MaxAbsScaler
-
The schema of data.
- schema() - Method in interface smile.regression.DataFrameRegression
-
Returns the design matrix schema.
- schema() - Method in class smile.regression.GradientTreeBoost
-
- schema() - Method in class smile.regression.LinearModel
-
- schema() - Method in class smile.regression.RandomForest
-
- schema() - Method in class smile.regression.RegressionTree
-
- score() - Method in class smile.base.cart.InternalNode
-
Returns the split score (reduction of impurity).
- scores - Variable in class smile.mds.MDS
-
The component scores.
- sd() - Method in class smile.neighbor.lsh.HashValueParzenModel
-
Returns the standard deviation.
- seed(T[], T[], int[], ToDoubleBiFunction<T, T>) - Static method in class smile.clustering.PartitionClustering
-
Initialize cluster membership of input objects with K-Means++ algorithm.
- seed(int, double[][]) - Static method in class smile.vq.NeuralGas
-
Selects random samples as initial neurons of Neural Gas.
- Selection - Interface in smile.gap
-
The way to select chromosomes from the population as parents to crossover.
- Sensitivity - Class in smile.validation
-
Sensitivity or true positive rate (TPR) (also called hit rate, recall) is a
statistical measures of the performance of a binary classification test.
- Sensitivity() - Constructor for class smile.validation.Sensitivity
-
- SequenceLabeler<T> - Interface in smile.sequence
-
A sequence labeler assigns a class label to each position of the sequence.
- setEdgeAge(Neuron, int) - Method in class smile.vq.hebb.Neuron
-
Sets the age of edge.
- setLearningRate(double) - Method in class smile.base.mlp.MultilayerPerceptron
-
Sets the learning rate.
- setLearningRate(double) - Method in class smile.classification.LogisticRegression
-
Sets the learning rate of stochastic gradient descent.
- setLearningRate(double) - Method in class smile.classification.Maxent
-
Sets the learning rate of stochastic gradient descent.
- setLearningRate(double) - Method in class smile.projection.GHA
-
Set the learning rate.
- setLocalSearchSteps(int) - Method in class smile.gap.GeneticAlgorithm
-
Sets the number of iterations of local search for Lamarckian algorithm.
- setMomentum(double) - Method in class smile.base.mlp.MultilayerPerceptron
-
Sets the momentum factor.
- setProb(PrZ[]) - Method in class smile.neighbor.lsh.Probe
-
Calculate the probability of the probe.
- setProjection(int) - Method in class smile.projection.PCA
-
Set the projection matrix with given number of principal components.
- setProjection(double) - Method in class smile.projection.PCA
-
Set the projection matrix with top principal components that contain
(more than) the given percentage of variance.
- setWeightDecay(double) - Method in class smile.base.mlp.MultilayerPerceptron
-
Sets the weight decay factor.
- shift() - Method in class smile.neighbor.lsh.Probe
-
This operation shifts to the right the last nonzero component if
it is equal to one and if it is not the last one.
- SIB - Class in smile.clustering
-
The Sequential Information Bottleneck algorithm.
- SIB(double, double[][], int[]) - Constructor for class smile.clustering.SIB
-
Constructor.
- sigmoid() - Static method in interface smile.base.mlp.ActivationFunction
-
Logistic sigmoid function: sigmoid(v)=1/(1+exp(-v)).
- sigmoid(int) - Static method in class smile.base.mlp.Layer
-
Returns a hidden layer with sigmoid activation function.
- SignalNoiseRatio - Class in smile.feature
-
The signal-to-noise (S2N) metric ratio is a univariate feature ranking metric,
which can be used as a feature selection criterion for binary classification
problems.
- SignalNoiseRatio() - Constructor for class smile.feature.SignalNoiseRatio
-
- SimHash<T> - Interface in smile.neighbor.lsh
-
SimHash is a technique for quickly estimating how similar two sets are.
- SingleLinkage - Class in smile.clustering.linkage
-
Single linkage.
- SingleLinkage(double[][]) - Constructor for class smile.clustering.linkage.SingleLinkage
-
Constructor.
- SingleLinkage(int, float[]) - Constructor for class smile.clustering.linkage.SingleLinkage
-
Constructor.
- size() - Method in class smile.association.FPGrowth
-
Returns the number transactions in the database.
- size() - Method in class smile.association.FPTree
-
Returns the number transactions in the database.
- size() - Method in class smile.base.cart.CART
-
Returns the number of nodes in the tree.
- size() - Method in class smile.base.cart.InternalNode
-
- size - Variable in class smile.base.cart.LeafNode
-
The number of samples in the node.
- size() - Method in class smile.base.cart.LeafNode
-
- size() - Method in interface smile.base.cart.Node
-
Returns the number of samples in the node.
- size() - Method in class smile.classification.AdaBoost
-
Returns the number of trees in the model.
- size() - Method in class smile.classification.GradientTreeBoost
-
Returns the number of trees in the model.
- size() - Method in class smile.classification.RandomForest
-
Returns the number of trees in the model.
- size() - Method in class smile.clustering.linkage.Linkage
-
Returns the proximity matrix size.
- size - Variable in class smile.clustering.PartitionClustering
-
The number of observations in each cluster.
- size() - Method in class smile.regression.GradientTreeBoost
-
Returns the number of trees in the model.
- size() - Method in class smile.regression.RandomForest
-
Returns the number of trees in the model.
- smile.association - package smile.association
-
Frequent item set mining and association rule mining.
- smile.base.cart - package smile.base.cart
-
- smile.base.mlp - package smile.base.mlp
-
- smile.base.rbf - package smile.base.rbf
-
- smile.base.svm - package smile.base.svm
-
- smile.classification - package smile.classification
-
Classification algorithms.
- smile.clustering - package smile.clustering
-
Clustering analysis.
- smile.clustering.linkage - package smile.clustering.linkage
-
Cluster dissimilarity measures.
- smile.feature - package smile.feature
-
Feature generation, normalization and selection.
- smile.gap - package smile.gap
-
Genetic algorithm and programming.
- smile.imputation - package smile.imputation
-
Missing value imputation.
- smile.manifold - package smile.manifold
-
Manifold learning finds a low-dimensional basis for describing
high-dimensional data.
- smile.mds - package smile.mds
-
Multidimensional scaling.
- smile.neighbor - package smile.neighbor
-
Nearest neighbor search.
- smile.neighbor.lsh - package smile.neighbor.lsh
-
- smile.projection - package smile.projection
-
Feature extraction.
- smile.projection.ica - package smile.projection.ica
-
- smile.regression - package smile.regression
-
Regression analysis.
- smile.sampling - package smile.sampling
-
Sampling is concerned with the selection of a subset of individuals
from within a statistical population to estimate characteristics of
the whole population.
- smile.sequence - package smile.sequence
-
Learning algorithms for sequence data.
- smile.taxonomy - package smile.taxonomy
-
A taxonomy is a tree of terms (concepts) where leaves
must be named but intermediary nodes can be anonymous.
- smile.validation - package smile.validation
-
Model validation.
- smile.vq - package smile.vq
-
Vector quantization is a lossy compression technique used in speech
and image coding.
- smile.vq.hebb - package smile.vq.hebb
-
Hebbian theory is a neuroscientific theory claiming that an increase in
synaptic efficacy arises from a presynaptic cell's repeated and persistent
stimulation of a postsynaptic cell.
- smile.wavelet - package smile.wavelet
-
Discrete wavelet transform (DWT).
- SNLSH<K,V> - Class in smile.neighbor
-
Locality-Sensitive Hashing for Signatures.
- SNLSH(int, SimHash<K>) - Constructor for class smile.neighbor.SNLSH
-
Constructor.
- SoftClassifier<T> - Interface in smile.classification
-
Soft classifiers calculate a posteriori probabilities besides the class
label of an instance.
- SOM - Class in smile.vq
-
Self-Organizing Map.
- SOM(double[][][], TimeFunction, Neighborhood) - Constructor for class smile.vq.SOM
-
Constructor.
- sparse(int, KernelMachine<SparseArray>) - Static method in class smile.base.svm.LinearKernelMachine
-
Creates a linear kernel machine.
- sparse(int, int) - Static method in class smile.projection.RandomProjection
-
Generates a sparse random projection.
- SparseOneHotEncoder - Class in smile.feature
-
Encode categorical integer features using sparse one-hot scheme.
- SparseOneHotEncoder(StructType) - Constructor for class smile.feature.SparseOneHotEncoder
-
Constructor.
- Specificity - Class in smile.validation
-
Specificity (SPC) or True Negative Rate is a statistical measures of the
performance of a binary classification test.
- Specificity() - Constructor for class smile.validation.Specificity
-
- SpectralClustering - Class in smile.clustering
-
Spectral Clustering.
- SpectralClustering(double, int, int[]) - Constructor for class smile.clustering.SpectralClustering
-
Constructor.
- split(Split, PriorityQueue<Split>) - Method in class smile.base.cart.CART
-
Split a node into two children nodes.
- Split - Class in smile.base.cart
-
The data about of a potential split for a leaf node.
- Split(LeafNode, int, double, int, int, int, int) - Constructor for class smile.base.cart.Split
-
Constructor.
- SplitRule - Enum in smile.base.cart
-
The criterion to choose variable to split instances.
- sqrt(int[], int[]) - Static method in class smile.validation.AdjustedMutualInformation
-
Calculates the adjusted mutual information of (I(y1, y2) - E(MI)) / (sqrt(H(y1) * H(y2)) - E(MI)).
- sqrt(int[], int[]) - Static method in class smile.validation.NormalizedMutualInformation
-
Calculates the normalized mutual information of I(y1, y2) / sqrt(H(y1) * H(y2)).
- Standardizer - Class in smile.feature
-
Standardizes numeric feature to 0 mean and unit variance.
- Standardizer(StructType, double[], double[]) - Constructor for class smile.feature.Standardizer
-
Constructor.
- strateify(int[], double) - Static method in class smile.sampling.Bagging
-
Stratified sampling.
- stress - Variable in class smile.mds.IsotonicMDS
-
The final stress achieved.
- stress - Variable in class smile.mds.SammonMapping
-
The final stress achieved.
- sum(int[], int[]) - Static method in class smile.validation.AdjustedMutualInformation
-
Calculates the adjusted mutual information of (I(y1, y2) - E(MI)) / (0.5 * (H(y1) + H(y2)) - E(MI)).
- sum(int[], int[]) - Static method in class smile.validation.NormalizedMutualInformation
-
Calculates the normalized mutual information of 2 * I(y1, y2) / (H(y1) + H(y2)).
- SumSquaresRatio - Class in smile.feature
-
The ratio of between-groups to within-groups sum of squares is a univariate
feature ranking metric, which can be used as a feature selection criterion
for multi-class classification problems.
- SumSquaresRatio() - Constructor for class smile.feature.SumSquaresRatio
-
- support - Variable in class smile.association.AssociationRule
-
The support value.
- support - Variable in class smile.association.ItemSet
-
The associated support of item set.
- SupportVector<T> - Class in smile.base.svm
-
Support vector.
- SupportVector(int, T, int, double, double, double, double, double) - Constructor for class smile.base.svm.SupportVector
-
- SVDImputation - Class in smile.imputation
-
Missing value imputation with singular value decomposition.
- SVDImputation(int) - Constructor for class smile.imputation.SVDImputation
-
Constructor.
- SVM<T> - Class in smile.classification
-
Support vector machines for classification.
- SVM(MercerKernel<T>, T[], double[], double) - Constructor for class smile.classification.SVM
-
Constructor.
- SVR<T> - Class in smile.base.svm
-
Epsilon support vector regression.
- SVR(MercerKernel<T>, double, double, double) - Constructor for class smile.base.svm.SVR
-
Constructor.
- SVR - Class in smile.regression
-
Epsilon support vector regression.
- SVR() - Constructor for class smile.regression.SVR
-
- SymletWavelet - Class in smile.wavelet
-
Symlet wavelets.
- SymletWavelet(int) - Constructor for class smile.wavelet.SymletWavelet
-
Constructor.
- T - Variable in class smile.vq.BIRCH
-
THe maximum radius of a sub-cluster.
- tanh() - Static method in interface smile.base.mlp.ActivationFunction
-
Hyperbolic tangent activation function.
- tanh(int) - Static method in class smile.base.mlp.Layer
-
Returns a hidden layer with hyperbolic tangent activation function.
- target - Variable in class smile.base.mlp.MultilayerPerceptron
-
The buffer to store desired target value of training instance.
- TaxonomicDistance - Class in smile.taxonomy
-
The distance between concepts in a taxonomy.
- TaxonomicDistance(Taxonomy) - Constructor for class smile.taxonomy.TaxonomicDistance
-
Constructor.
- Taxonomy - Class in smile.taxonomy
-
A taxonomy is a tree of terms (aka concept) where leaves
must be named but intermediary nodes can be anonymous.
- Taxonomy(String...) - Constructor for class smile.taxonomy.Taxonomy
-
Constructor.
- test(DataFrame) - Method in class smile.classification.AdaBoost
-
Test the model on a validation dataset.
- test(DataFrame) - Method in class smile.classification.GradientTreeBoost
-
Test the model on a validation dataset.
- test(DataFrame) - Method in class smile.classification.RandomForest
-
Test the model on a validation dataset.
- test(DataFrame) - Method in class smile.regression.GradientTreeBoost
-
Test the model on a validation dataset.
- test(DataFrame) - Method in class smile.regression.RandomForest
-
Test the model on a validation dataset.
- test - Variable in class smile.validation.Bootstrap
-
The index of testing instances.
- test - Variable in class smile.validation.CrossValidation
-
The index of testing instances.
- test - Variable in class smile.validation.GroupKFold
-
The index of testing instances.
- test - Variable in class smile.validation.LOOCV
-
The index of testing instances.
- test(Classifier<T>, T[]) - Static method in interface smile.validation.Validation
-
Tests a classifier on a validation set.
- test(DataFrameClassifier, DataFrame) - Static method in interface smile.validation.Validation
-
Tests a regression model on a validation set.
- test(Regression<T>, T[]) - Static method in interface smile.validation.Validation
-
Tests a regression model on a validation set.
- test(DataFrameRegression, DataFrame) - Static method in interface smile.validation.Validation
-
Tests a regression model on a validation set.
- text() - Static method in interface smile.neighbor.lsh.SimHash
-
Returns the simhash for string tokens.
- toNode(Node, Node) - Method in class smile.base.cart.NominalSplit
-
- toNode(Node, Node) - Method in class smile.base.cart.OrdinalSplit
-
- toNode(Node, Node) - Method in class smile.base.cart.Split
-
Returns an internal node with the feature, value, and score of this split.
- toString() - Method in class smile.association.AssociationRule
-
- toString() - Method in class smile.association.ItemSet
-
- toString() - Method in class smile.base.cart.CART
-
Returns a text representation of the tree in R's rpart format.
- toString(StructType, StructField, InternalNode, int, BigInteger, List<String>) - Method in class smile.base.cart.DecisionNode
-
- toString(StructType, boolean) - Method in class smile.base.cart.InternalNode
-
Returns the string representation of branch.
- toString(StructType, StructField, InternalNode, int, BigInteger, List<String>) - Method in class smile.base.cart.InternalNode
-
- toString(StructType, StructField, InternalNode, int, BigInteger, List<String>) - Method in interface smile.base.cart.Node
-
Adds the string representation (R's rpart format) to a collection.
- toString(StructType, boolean) - Method in class smile.base.cart.NominalNode
-
- toString(StructType, boolean) - Method in class smile.base.cart.OrdinalNode
-
- toString(StructType, StructField, InternalNode, int, BigInteger, List<String>) - Method in class smile.base.cart.RegressionNode
-
- toString() - Method in class smile.base.cart.Split
-
- toString() - Method in class smile.base.mlp.HiddenLayer
-
- toString() - Method in class smile.base.mlp.MultilayerPerceptron
-
- toString() - Method in class smile.base.mlp.OutputLayer
-
- toString() - Method in class smile.base.svm.KernelMachine
-
- toString() - Method in class smile.classification.IsotonicRegressionScaling
-
- toString() - Method in class smile.clustering.CentroidClustering
-
- toString() - Method in class smile.clustering.linkage.CompleteLinkage
-
- toString() - Method in class smile.clustering.linkage.SingleLinkage
-
- toString() - Method in class smile.clustering.linkage.UPGMALinkage
-
- toString() - Method in class smile.clustering.linkage.UPGMCLinkage
-
- toString() - Method in class smile.clustering.linkage.WardLinkage
-
- toString() - Method in class smile.clustering.linkage.WPGMALinkage
-
- toString() - Method in class smile.clustering.linkage.WPGMCLinkage
-
- toString() - Method in class smile.clustering.MEC
-
- toString() - Method in class smile.clustering.PartitionClustering
-
- toString() - Method in class smile.feature.MaxAbsScaler
-
- toString() - Method in class smile.feature.Normalizer
-
- toString() - Method in class smile.feature.RobustStandardizer
-
- toString() - Method in class smile.feature.Scaler
-
- toString() - Method in class smile.feature.Standardizer
-
- toString() - Method in class smile.feature.WinsorScaler
-
- toString() - Method in class smile.gap.BitString
-
- toString() - Method in class smile.neighbor.BKTree
-
- toString() - Method in class smile.neighbor.CoverTree
-
- toString() - Method in class smile.neighbor.KDTree
-
- toString() - Method in class smile.neighbor.LinearSearch
-
- toString() - Method in class smile.neighbor.LSH
-
- toString() - Method in class smile.neighbor.MPLSH
-
- toString() - Method in class smile.neighbor.Neighbor
-
- toString() - Method in class smile.regression.LinearModel
-
- toString() - Method in class smile.sampling.Bagging
-
- toString() - Method in class smile.sequence.CRFLabeler
-
- toString() - Method in class smile.sequence.HMM
-
- toString() - Method in class smile.sequence.HMMLabeler
-
- toString() - Method in class smile.taxonomy.Concept
-
- toString() - Method in class smile.taxonomy.TaxonomicDistance
-
- toString() - Method in class smile.validation.Accuracy
-
- toString() - Method in class smile.validation.AdjustedMutualInformation
-
- toString() - Method in class smile.validation.AdjustedRandIndex
-
- toString() - Method in class smile.validation.ConfusionMatrix
-
- toString() - Method in class smile.validation.Error
-
- toString() - Method in class smile.validation.Fallout
-
- toString() - Method in class smile.validation.FDR
-
- toString() - Method in class smile.validation.MCC
-
- toString() - Method in class smile.validation.MeanAbsoluteDeviation
-
- toString() - Method in class smile.validation.MSE
-
- toString() - Method in class smile.validation.MutualInformation
-
- toString() - Method in class smile.validation.NormalizedMutualInformation
-
- toString() - Method in class smile.validation.Precision
-
- toString() - Method in class smile.validation.RandIndex
-
- toString() - Method in class smile.validation.Recall
-
- toString() - Method in class smile.validation.RMSE
-
- toString() - Method in class smile.validation.RSS
-
- toString() - Method in class smile.validation.Sensitivity
-
- toString() - Method in class smile.validation.Specificity
-
- toSVM() - Method in class smile.base.svm.KernelMachine
-
Convert the kernel machine to SVM instance.
- Tournament(int, double) - Static method in interface smile.gap.Selection
-
Tournament Selection.
- train - Variable in class smile.validation.Bootstrap
-
The index of training instances.
- train - Variable in class smile.validation.CrossValidation
-
The index of training instances.
- train - Variable in class smile.validation.GroupKFold
-
The index of training instances.
- train - Variable in class smile.validation.LOOCV
-
The index of training instances.
- transform(double[]) - Method in interface smile.feature.FeatureTransform
-
Transform a feature vector.
- transform(double[][]) - Method in interface smile.feature.FeatureTransform
-
Transform a data frame.
- transform(Tuple) - Method in interface smile.feature.FeatureTransform
-
Transform a feature vector.
- transform(DataFrame) - Method in interface smile.feature.FeatureTransform
-
Transform a data frame.
- transform(double[]) - Method in class smile.feature.MaxAbsScaler
-
- transform(Tuple) - Method in class smile.feature.MaxAbsScaler
-
- transform(DataFrame) - Method in class smile.feature.MaxAbsScaler
-
- transform(double[]) - Method in class smile.feature.Normalizer
-
- transform(Tuple) - Method in class smile.feature.Normalizer
-
- transform(DataFrame) - Method in class smile.feature.Normalizer
-
- transform(double[]) - Method in class smile.feature.Scaler
-
- transform(Tuple) - Method in class smile.feature.Scaler
-
- transform(DataFrame) - Method in class smile.feature.Scaler
-
- transform(double[]) - Method in class smile.feature.Standardizer
-
- transform(Tuple) - Method in class smile.feature.Standardizer
-
- transform(DataFrame) - Method in class smile.feature.Standardizer
-
- transform(double[]) - Method in class smile.wavelet.Wavelet
-
Discrete wavelet transform.
- trees() - Method in class smile.classification.AdaBoost
-
Returns the decision trees.
- trees() - Method in class smile.classification.GradientTreeBoost
-
Returns the regression trees.
- trees() - Method in class smile.classification.RandomForest
-
Returns the decision trees.
- trees() - Method in class smile.regression.GradientTreeBoost
-
Returns the regression trees.
- trees() - Method in class smile.regression.RandomForest
-
Returns the regression trees.
- trim(int) - Method in class smile.classification.AdaBoost
-
Trims the tree model set to a smaller size in case of over-fitting.
- trim(int) - Method in class smile.classification.GradientTreeBoost
-
Trims the tree model set to a smaller size in case of over-fitting.
- trim(int) - Method in class smile.classification.RandomForest
-
Trims the tree model set to a smaller size in case of over-fitting.
- trim(int) - Method in class smile.regression.GradientTreeBoost
-
Trims the tree model set to a smaller size in case of over-fitting.
- trim(int) - Method in class smile.regression.RandomForest
-
Trims the tree model set to a smaller size in case of over-fitting.
- trueChild() - Method in class smile.base.cart.InternalNode
-
Returns the true branch child.
- TSNE - Class in smile.manifold
-
The t-distributed stochastic neighbor embedding (t-SNE) is a nonlinear
dimensionality reduction technique that is particularly well suited
for embedding high-dimensional data into a space of two or three
dimensions, which can then be visualized in a scatter plot.
- TSNE(double[][], int) - Constructor for class smile.manifold.TSNE
-
Constructor.
- TSNE(double[][], int, double, double, int) - Constructor for class smile.manifold.TSNE
-
Constructor.
- ttest() - Method in class smile.regression.LinearModel
-
Returns the t-test of the coefficients (including intercept).
- Validation - Interface in smile.validation
-
A utility class for validating predictive models on test data.
- value - Variable in class smile.neighbor.Neighbor
-
The data object of neighbor.
- valueOf(String) - Static method in enum smile.base.cart.Loss.Type
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in interface smile.base.cart.Loss
-
Parses the loss.
- valueOf(String) - Static method in enum smile.base.cart.SplitRule
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum smile.base.mlp.Cost
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum smile.base.mlp.OutputFunction
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum smile.classification.DiscreteNaiveBayes.Model
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum smile.feature.Normalizer.Norm
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum smile.gap.Crossover
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum smile.validation.AdjustedMutualInformation.Method
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum smile.validation.NormalizedMutualInformation.Method
-
Returns the enum constant of this type with the specified name.
- values() - Static method in enum smile.base.cart.Loss.Type
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum smile.base.cart.SplitRule
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum smile.base.mlp.Cost
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum smile.base.mlp.OutputFunction
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum smile.classification.DiscreteNaiveBayes.Model
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum smile.feature.Normalizer.Norm
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum smile.gap.Crossover
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Method in class smile.neighbor.MutableLSH
-
Returns the values.
- values() - Static method in enum smile.validation.AdjustedMutualInformation.Method
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum smile.validation.NormalizedMutualInformation.Method
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- var - Variable in class smile.neighbor.lsh.NeighborHashValueModel
-
Variance of hash values of neighbors.
- VectorQuantizer - Interface in smile.vq
-
Vector quantizer with competitive learning.
- viterbi(Tuple[]) - Method in class smile.sequence.CRF
-
Labels sequence with Viterbi algorithm.
- viterbi(T[]) - Method in class smile.sequence.CRFLabeler
-
Labels sequence with Viterbi algorithm.
- vote(Tuple, double[]) - Method in class smile.classification.RandomForest
-
Predict and estimate the probability by voting.