smile.data.formula.Formula formula
smile.data.type.StructType schema
smile.data.type.StructField response
Node root
int maxDepth
int maxNodes
int nodeSize
int mtry
double[] importance
int output
int[] count
int size
int value
double value
double mean
double output
double rss
ActivationFunction f
int n
int p
double[] output
double[] gradient
smile.math.matrix.Matrix weight
smile.math.matrix.Matrix update
double[] bias
double[] updateBias
int p
OutputLayer output
Layer[] net
double[] target
double eta
double alpha
double lambda
Cost cost
OutputFunction f
java.lang.Object center
smile.math.rbf.RadialBasisFunction rbf
smile.math.distance.Metric<T> distance
smile.math.kernel.MercerKernel<T> kernel
java.lang.Object[] instances
double[] w
double b
smile.math.kernel.MercerKernel<T> kernel
double Cp
double Cn
double tol
java.util.LinkedList<E> sv
double b
boolean minmaxflag
SupportVector<T> svmin
SupportVector<T> svmax
double gmin
double gmax
java.lang.Object[] x
double[][] K
double[] w
double b
int i
java.lang.Object x
double alpha
double g
double cmin
double cmax
double k
smile.data.formula.Formula formula
int k
DecisionTree[] trees
double[] alpha
double[] error
double[] importance
smile.util.IntSet labels
int k
smile.util.IntSet labels
int[] y
int[] ni
double[] priori
SplitRule rule
int k
smile.util.IntSet labels
DiscreteNaiveBayes.Model model
int k
int p
double[] priori
double sigma
boolean fixedPriori
int n
int[] nc
int[] nt
int[][] ntc
double[][] logcondprob
smile.util.IntSet labels
int p
int k
smile.math.matrix.Matrix scaling
double[] mean
double[][] mu
smile.util.IntSet labels
smile.data.formula.Formula formula
int k
RegressionTree[] trees
RegressionTree[][] forest
double[] importance
double b
double shrinkage
smile.util.IntSet labels
double[] buckets
double[] prob
int p
int k
double[] logppriori
double[] priori
double[][] mu
double[] eigen
smile.math.matrix.Matrix scaling
smile.util.IntSet labels
int p
int k
double L
double lambda
double eta
smile.util.IntSet labels
double[] w
double[][] w
int p
int k
double L
double lambda
double eta
smile.util.IntSet labels
double[] w
double[][] w
int k
smile.util.IntSet labels
int k
int p
double[] priori
smile.stat.distribution.Distribution[][] prob
smile.util.IntSet labels
int k
Classifier<T>[][] classifiers
PlattScaling[][] platts
smile.util.IntSet labels
int k
Classifier<T>[] classifiers
PlattScaling[] platts
smile.util.IntSet labels
double alpha
double beta
int p
int k
double[] logppriori
double[] priori
double[][] mu
double[][] eigen
smile.math.matrix.Matrix[] scaling
smile.util.IntSet labels
smile.data.formula.Formula formula
java.util.List<E> trees
int k
double error
double[] importance
smile.util.IntSet labels
int p
int k
double L
double lambda
double eta
smile.util.IntSet labels
double[] w
double[][] w
double distortion
java.lang.Object[] centroids
smile.math.distance.Distance<T> distance
double tol
double sigma
double[][] attractors
double[] radius
double[][] samples
int[][] merge
double[] height
int k
int[] y
int[] size
double distortion
smile.data.type.StructType schema
double[] scale
Normalizer.Norm norm
smile.data.type.StructType schema
double[] lo
double[] hi
smile.data.type.StructType schema
double[] mu
double[] std
smile.data.formula.Formula formula
java.lang.String[] predictors
Model model
double[] beta
double[][] ztest
double[] mu
double nullDeviance
The saturated model, also referred to as the full model or maximal model, allows a different mean response for each group of replicates. One can think of the saturated model as having the most general possible mean structure for the data since the means are unconstrained.
The null model assumes that all observations have the same distribution with common parameter. Like the saturated model, the null model does not depend on predictor variables. While the saturated most is the most general model, the null model is the most restricted model.
double deviance
double[] devianceResiduals
int df
double loglikelihood
int[] index
double[][] coordinates
smile.graph.AdjacencyList graph
double width
int[] index
double[][] coordinates
smile.graph.AdjacencyList graph
int[] index
double[][] coordinates
smile.graph.AdjacencyList graph
double[][] coordinates
double eta
double momentum
double finalMomentum
int momentumSwitchIter
double minGain
int totalIter
double[][] D
double[][] dY
double[][] gains
double[][] P
double[][] Q
double Qsum
double[][] coordinates
int[] index
smile.graph.AdjacencyList graph
smile.neighbor.BKTree.Node root
smile.math.distance.Metric<T> distance
int count
java.lang.Object[] data
smile.math.distance.Metric<T> distance
smile.neighbor.CoverTree.Node root
double base
double invLogBase
double[][] keys
java.lang.Object[] data
smile.neighbor.KDTree.Node root
int[] index
java.lang.Object[] data
smile.math.distance.Distance<T> distance
java.util.ArrayList<E> keys
java.util.ArrayList<E> data
java.util.List<E> hash
int H
int k
double w
java.util.List<E> model
long mask
java.util.LinkedHashMap<K,V>[] bands
java.util.List<E> data
java.util.List<E> keys
java.util.List<E> signatures
smile.hash.SimHash<T> simhash
int bucket
smile.util.IntArrayList entry
int MAX_HASH_RND
int P
int H
int d
int k
double w
int[] c
smile.math.matrix.Matrix a
double[] b
Bucket[] table
double[] umin
double[] umax
MultiProbeHash hash
PrH[][][] lookup
int u
double pr
int p
int n
double r
smile.math.matrix.Matrix projection
double[] y
double[] wy
double[][] components
int p
java.lang.Object[] data
smile.math.kernel.MercerKernel<T> kernel
double[] mean
double mu
double[] latent
smile.math.matrix.Matrix projection
double[][] coordinates
int p
int n
double[] mu
double[] pmu
smile.math.matrix.Matrix eigvectors
double[] eigvalues
double[] proportion
double[] cumulativeProportion
smile.math.matrix.Matrix projection
double[] mu
double[] pmu
double noise
smile.math.matrix.Matrix loading
smile.math.matrix.Matrix projection
smile.math.matrix.Matrix projection
smile.data.formula.Formula formula
RegressionTree[] trees
double b
double[] importance
double shrinkage
smile.data.formula.Formula formula
smile.data.type.StructType schema
java.lang.String[] predictors
int p
double b
double[] w
double[][] ttest
double[] fittedValues
double[] residuals
double RSS
double error
int df
double RSquared
In the case of ordinary least-squares regression, R2 increases as we increase the number of variables in the model (R2 will not decrease). This illustrates a drawback to one possible use of R2, where one might try to include more variables in the model until "there is no more improvement". This leads to the alternative approach of looking at the adjusted R2.
double adjustedRSquared
double F
double pvalue
smile.math.matrix.Matrix V
smile.data.formula.Formula formula
RegressionTree[] trees
double error
double[] importance
smile.data.type.StructType schema
RegressionTree[][] potentials
double shrinkage
CRF model
java.util.function.Function<T,R> features
double[] pi
smile.math.matrix.Matrix a
smile.math.matrix.Matrix b
HMM model
java.util.function.ToIntFunction<T> ordinal
Taxonomy taxonomy
int B
int L
double T
int d
smile.vq.BIRCH.Node root
int d
int t
double epsBest
double epsNeighbor
int edgeLifetime
int lambda
double alpha
double beta
java.util.ArrayList<E> neurons
Neuron[] top2
smile.vq.NeuralGas.Neuron[] neurons
smile.graph.AdjacencyMatrix graph
smile.math.TimeFunction alpha
smile.math.TimeFunction theta
int lifetime
double[] dist
int t
double eps
int t
double r
int edgeLifetime
double epsBest
double epsNeighbor
double beta
java.util.ArrayList<E> neurons
Neuron[] top2
int nrows
int ncols
smile.vq.SOM.Neuron[][] map
smile.vq.SOM.Neuron[] neurons
double[] dist
smile.math.TimeFunction alpha
Neighborhood theta
int t
double eps
Neuron neighbor
int age
double[] w
java.util.List<E> edges
double distance
double counter