object write
Data saving utilities.
- Alphabetic
- By Inheritance
- write
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
apply[T](data: Array[T], file: Path): Unit
Writes an array to a text file line by line.
Writes an array to a text file line by line.
- data
an array.
- file
the file path
-
def
apply[T](data: Array[T], file: String): Unit
Writes an array to a text file line by line.
Writes an array to a text file line by line.
- data
an array.
- file
the file path
-
def
apply[T <: Serializable](x: T, file: Path): Unit
Serializes a
Serializable
object/model to a file. -
def
apply[T <: Serializable](x: T, file: String): Unit
Serializes a
Serializable
object/model to a file. -
def
arff(data: DataFrame, file: Path, relation: String): Unit
Writes a data frame to an ARFF file.
-
def
arff(data: DataFrame, file: String, relation: String): Unit
Writes a data frame to an ARFF file.
-
def
arrow(data: DataFrame, file: Path): Unit
Writes a data frame to an Apache Arrow file.
-
def
arrow(data: DataFrame, file: String): Unit
Writes a data frame to an Apache Arrow file.
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
csv(data: DataFrame, file: Path, delimiter: Char): Unit
Writes a DataFrame to a delimited text file.
Writes a DataFrame to a delimited text file.
- data
an attribute dataset.
- file
the file path
-
def
csv(data: DataFrame, file: String, delimiter: Char = ','): Unit
Writes a DataFrame to a delimited text file.
Writes a DataFrame to a delimited text file.
- data
an attribute dataset.
- file
the file path
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
table[T](data: Array[Array[T]], file: Path, delimiter: Char): Unit
Writes a two-dimensional array to a delimited text file.
Writes a two-dimensional array to a delimited text file.
- data
a two-dimensional array.
- file
the file path
- delimiter
delimiter string
-
def
table[T](data: Array[Array[T]], file: String, delimiter: Char = ','): Unit
Writes a two-dimensional array to a delimited text file.
Writes a two-dimensional array to a delimited text file.
- data
a two-dimensional array.
- file
the file path
- delimiter
delimiter string
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
xstream[T <: AnyRef](x: T, file: Path): Unit
Serializes an object/model to a file by XStream.
-
def
xstream[T <: AnyRef](x: T, file: String): Unit
Serializes an object/model to a file by XStream.
Smile (Statistical Machine Intelligence and Learning Engine) is a fast and comprehensive machine learning, NLP, linear algebra, graph, interpolation, and visualization system in Java and Scala. With advanced data structures and algorithms, Smile delivers state-of-art performance.
Smile covers every aspect of machine learning, including classification, regression, clustering, association rule mining, feature selection, manifold learning, multidimensional scaling, genetic algorithms, missing value imputation, efficient nearest neighbor search, etc.