object validate
- Alphabetic
- By Inheritance
- validate
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
classification[M <: DataFrameClassifier](formula: Formula, train: DataFrame, test: DataFrame)(trainer: (Formula, DataFrame) ⇒ M): ClassificationValidation[M]
Test a generic classifier.
Test a generic classifier. The accuracy will be measured and printed out on standard output.
- train
training data.
- test
test data.
- trainer
a code block to return a classifier trained on the given data.
- returns
the trained classifier.
-
def
classification[T <: AnyRef, M <: Classifier[T]](x: Array[T], y: Array[Int], testx: Array[T], testy: Array[Int])(trainer: (Array[T], Array[Int]) ⇒ M): ClassificationValidation[M]
Test a generic classifier.
Test a generic classifier. The accuracy will be measured and printed out on standard output.
- T
the type of training and test data.
- x
training data.
- y
training labels.
- testx
test data.
- testy
test data labels.
- trainer
a code block to return a classifier trained on the given data.
- returns
the trained classifier.
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
regression[M <: DataFrameRegression](formula: Formula, train: DataFrame, test: DataFrame)(trainer: (Formula, DataFrame) ⇒ M): RegressionValidation[M]
Test a generic classifier.
Test a generic classifier. The accuracy will be measured and printed out on standard output.
- train
training data.
- test
test data.
- trainer
a code block to return a classifier trained on the given data.
- returns
the trained classifier.
-
def
regression[T <: AnyRef, M <: Regression[T]](x: Array[T], y: Array[Double], testx: Array[T], testy: Array[Double])(trainer: (Array[T], Array[Double]) ⇒ M): RegressionValidation[M]
Test a generic classifier.
Test a generic classifier. The accuracy will be measured and printed out on standard output.
- T
the type of training and test data.
- x
training data.
- y
training labels.
- testx
test data.
- testy
test data labels.
- trainer
a code block to return a classifier trained on the given data.
- returns
the trained classifier.
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
Smile (Statistical Machine Intelligence and Learning Engine) is a fast and comprehensive machine learning, NLP, linear algebra, graph, interpolation, and visualization system in Java and Scala. With advanced data structures and algorithms, Smile delivers state-of-art performance.
Smile covers every aspect of machine learning, including classification, regression, clustering, association rule mining, feature selection, manifold learning, multidimensional scaling, genetic algorithms, missing value imputation, efficient nearest neighbor search, etc.