Packages

package math

Mathematical and statistical functions.

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. math
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. Protected

Package Members

  1. package distance

    Distance functions.

  2. package matrix

Type Members

  1. case class AbsMatrix(A: MatrixExpression) extends MatrixExpression with Product with Serializable
  2. case class AbsVector(x: VectorExpression) extends VectorExpression with Product with Serializable
  3. case class AcosMatrix(A: MatrixExpression) extends MatrixExpression with Product with Serializable
  4. case class AcosVector(x: VectorExpression) extends VectorExpression with Product with Serializable
  5. case class AsinMatrix(A: MatrixExpression) extends MatrixExpression with Product with Serializable
  6. case class AsinVector(x: VectorExpression) extends VectorExpression with Product with Serializable
  7. case class AtanMatrix(A: MatrixExpression) extends MatrixExpression with Product with Serializable
  8. case class AtanVector(x: VectorExpression) extends VectorExpression with Product with Serializable
  9. case class Ax(A: MatrixExpression, x: VectorExpression) extends VectorExpression with Product with Serializable
  10. case class CbrtMatrix(A: MatrixExpression) extends MatrixExpression with Product with Serializable
  11. case class CbrtVector(x: VectorExpression) extends VectorExpression with Product with Serializable
  12. case class CeilMatrix(A: MatrixExpression) extends MatrixExpression with Product with Serializable
  13. case class CeilVector(x: VectorExpression) extends VectorExpression with Product with Serializable
  14. case class ExpMatrix(A: MatrixExpression) extends MatrixExpression with Product with Serializable
  15. case class ExpVector(x: VectorExpression) extends VectorExpression with Product with Serializable
  16. case class Expm1Matrix(A: MatrixExpression) extends MatrixExpression with Product with Serializable
  17. case class Expm1Vector(x: VectorExpression) extends VectorExpression with Product with Serializable
  18. case class FloorMatrix(A: MatrixExpression) extends MatrixExpression with Product with Serializable
  19. case class FloorVector(x: VectorExpression) extends VectorExpression with Product with Serializable
  20. case class Log10Matrix(A: MatrixExpression) extends MatrixExpression with Product with Serializable
  21. case class Log10Vector(x: VectorExpression) extends VectorExpression with Product with Serializable
  22. case class Log1pMatrix(A: MatrixExpression) extends MatrixExpression with Product with Serializable
  23. case class Log1pVector(x: VectorExpression) extends VectorExpression with Product with Serializable
  24. case class Log2Matrix(A: MatrixExpression) extends MatrixExpression with Product with Serializable
  25. case class Log2Vector(x: VectorExpression) extends VectorExpression with Product with Serializable
  26. case class LogMatrix(A: MatrixExpression) extends MatrixExpression with Product with Serializable
  27. case class LogVector(x: VectorExpression) extends VectorExpression with Product with Serializable
  28. case class MatrixAddMatrix(A: MatrixExpression, B: MatrixExpression) extends MatrixExpression with Product with Serializable
  29. case class MatrixAddValue(A: MatrixExpression, y: Double) extends MatrixExpression with Product with Serializable
  30. case class MatrixDivMatrix(A: MatrixExpression, B: MatrixExpression) extends MatrixExpression with Product with Serializable
  31. case class MatrixDivValue(A: MatrixExpression, y: Double) extends MatrixExpression with Product with Serializable
  32. sealed trait MatrixExpression extends AnyRef
  33. case class MatrixLift(A: DenseMatrix) extends MatrixExpression with Product with Serializable
  34. case class MatrixMulMatrix(A: MatrixExpression, B: MatrixExpression) extends MatrixExpression with Product with Serializable
  35. case class MatrixMulValue(A: MatrixExpression, y: Double) extends MatrixExpression with Product with Serializable
  36. case class MatrixMultiplicationChain(A: Seq[MatrixExpression]) extends MatrixExpression with Product with Serializable
  37. case class MatrixMultiplicationExpression(A: MatrixExpression, B: MatrixExpression) extends MatrixExpression with Product with Serializable
  38. class MatrixOrderOptimization extends LazyLogging

    Optimizes the order of matrix multiplication chain.

    Optimizes the order of matrix multiplication chain. Matrix multiplication is associative. However, the complexity of matrix multiplication chain is not associative.

  39. case class MatrixSubMatrix(A: MatrixExpression, B: MatrixExpression) extends MatrixExpression with Product with Serializable
  40. case class MatrixSubValue(A: MatrixExpression, y: Double) extends MatrixExpression with Product with Serializable
  41. case class MatrixTranspose(A: MatrixExpression) extends MatrixExpression with Product with Serializable
  42. case class RoundMatrix(A: MatrixExpression) extends MatrixExpression with Product with Serializable
  43. case class RoundVector(x: VectorExpression) extends VectorExpression with Product with Serializable
  44. case class SinMatrix(A: MatrixExpression) extends MatrixExpression with Product with Serializable
  45. case class SinVector(x: VectorExpression) extends VectorExpression with Product with Serializable
  46. case class SqrtMatrix(A: MatrixExpression) extends MatrixExpression with Product with Serializable
  47. case class SqrtVector(x: VectorExpression) extends VectorExpression with Product with Serializable
  48. case class TanMatrix(A: MatrixExpression) extends MatrixExpression with Product with Serializable
  49. case class TanVector(x: VectorExpression) extends VectorExpression with Product with Serializable
  50. case class TanhMatrix(A: MatrixExpression) extends MatrixExpression with Product with Serializable
  51. case class TanhVector(x: VectorExpression) extends VectorExpression with Product with Serializable
  52. case class ValueAddMatrix(y: Double, A: MatrixExpression) extends MatrixExpression with Product with Serializable
  53. case class ValueAddVector(y: Double, x: VectorExpression) extends VectorExpression with Product with Serializable
  54. case class ValueDivMatrix(y: Double, A: MatrixExpression) extends MatrixExpression with Product with Serializable
  55. case class ValueDivVector(y: Double, x: VectorExpression) extends VectorExpression with Product with Serializable
  56. case class ValueMulMatrix(y: Double, A: MatrixExpression) extends MatrixExpression with Product with Serializable
  57. case class ValueMulVector(y: Double, x: VectorExpression) extends VectorExpression with Product with Serializable
  58. case class ValueSubMatrix(y: Double, A: MatrixExpression) extends MatrixExpression with Product with Serializable
  59. case class ValueSubVector(y: Double, x: VectorExpression) extends VectorExpression with Product with Serializable
  60. case class VectorAddValue(x: VectorExpression, y: Double) extends VectorExpression with Product with Serializable
  61. case class VectorAddVector(x: VectorExpression, y: VectorExpression) extends VectorExpression with Product with Serializable
  62. case class VectorDivValue(x: VectorExpression, y: Double) extends VectorExpression with Product with Serializable
  63. case class VectorDivVector(x: VectorExpression, y: VectorExpression) extends VectorExpression with Product with Serializable
  64. sealed trait VectorExpression extends AnyRef

    Vector Expression.

  65. case class VectorLift(x: Array[Double]) extends VectorExpression with Product with Serializable
  66. case class VectorMulValue(x: VectorExpression, y: Double) extends VectorExpression with Product with Serializable
  67. case class VectorMulVector(x: VectorExpression, y: VectorExpression) extends VectorExpression with Product with Serializable
  68. case class VectorSubValue(x: VectorExpression, y: Double) extends VectorExpression with Product with Serializable
  69. case class VectorSubVector(x: VectorExpression, y: VectorExpression) extends VectorExpression with Product with Serializable

Value Members

  1. def abs(x: MatrixExpression): AbsMatrix
  2. def abs(x: VectorExpression): AbsVector
  3. def acos(x: MatrixExpression): AcosMatrix
  4. def acos(x: VectorExpression): AcosVector
  5. implicit def array2VectorExpression(x: Array[Double]): VectorLift
  6. def asin(x: MatrixExpression): AsinMatrix
  7. def asin(x: VectorExpression): AsinVector
  8. def atan(x: MatrixExpression): AtanMatrix
  9. def atan(x: VectorExpression): AtanVector
  10. def beta(x: Double, y: Double): Double

    The beta function, also called the Euler integral of the first kind.

    The beta function, also called the Euler integral of the first kind.

    B(x, y) = 01 tx-1 (1-t)y-1dt

    for x, y > 0 and the integration is over [0,1].The beta function is symmetric, i.e. B(x,y) = B(y,x).

  11. def cbrt(x: MatrixExpression): CbrtMatrix
  12. def cbrt(x: VectorExpression): CbrtVector
  13. def ceil(x: MatrixExpression): CeilMatrix
  14. def ceil(x: VectorExpression): CeilVector
  15. def chisqtest(table: Array[Array[Int]]): ChiSqTest

    Given a two-dimensional contingency table in the form of an array of integers, returns Chi-square test for independence.

    Given a two-dimensional contingency table in the form of an array of integers, returns Chi-square test for independence. The rows of contingency table are labels by the values of one nominal variable, the columns are labels by the values of the other nominal variable, and whose entries are non-negative integers giving the number of observed events for each combination of row and column. Continuity correction will be applied when computing the test statistic for 2x2 tables: one half is subtracted from all |O-E| differences. The correlation coefficient is calculated as Cramer's V.

  16. def chisqtest(x: Array[Int], prob: Array[Double], constraints: Int = 1): ChiSqTest

    One-sample chisq test.

    One-sample chisq test. Given the array x containing the observed numbers of events, and an array prob containing the expected probabilities of events, and given the number of constraints (normally one), a small value of p-value indicates a significant difference between the distributions.

  17. def chisqtest2(x: Array[Int], y: Array[Int], constraints: Int = 1): ChiSqTest

    Two-sample chisq test.

    Two-sample chisq test. Given the arrays x and y, containing two sets of binned data, and given one constraint, a small value of p-value indicates a significant difference between two distributions.

  18. def cholesky(A: MatrixExpression): Cholesky

    Cholesky decomposition.

  19. def cholesky(A: DenseMatrix): Cholesky

    Cholesky decomposition.

  20. def cholesky(A: Array[Array[Double]]): Cholesky

    Cholesky decomposition.

  21. def det(A: MatrixExpression): Double

    Returns the determinant of matrix.

  22. def det(A: DenseMatrix): Double

    Returns the determinant of matrix.

  23. def diag(A: Matrix): Array[Double]

    Returns the diagonal elements of matrix.

  24. def digamma(x: Double): Double

    The digamma function is defined as the logarithmic derivative of the gamma function.

  25. def eig(A: MatrixExpression): Array[Double]

    Returns eigen values.

  26. def eig(A: DenseMatrix): Array[Double]

    Returns eigen values.

  27. def eig(A: Array[Array[Double]]): Array[Double]

    Returns eigen values.

  28. def eigen(A: DenseMatrix, k: Int, kappa: Double = 1E-8, maxIter: Int = -1): EVD

    Eigen decomposition.

  29. def eigen(A: MatrixExpression): EVD

    Eigen decomposition.

  30. def eigen(A: DenseMatrix): EVD

    Eigen decomposition.

  31. def eigen(A: Array[Array[Double]]): EVD

    Eigen decomposition.

  32. def erf(x: Double): Double

    The error function (also called the Gauss error function) is a special function of sigmoid shape which occurs in probability, statistics, materials science, and partial differential equations.

    The error function (also called the Gauss error function) is a special function of sigmoid shape which occurs in probability, statistics, materials science, and partial differential equations. It is defined as:

    erf(x) = 0x e-t2dt

    The complementary error function, denoted erfc, is defined as erfc(x) = 1 - erf(x). The error function and complementary error function are special cases of the incomplete gamma function.

  33. def erfc(x: Double): Double

    The complementary error function.

  34. def erfcc(x: Double): Double

    The complementary error function with fractional error everywhere less than 1.2 × 10-7.

    The complementary error function with fractional error everywhere less than 1.2 × 10-7. This concise routine is faster than erfc.

  35. def exp(x: MatrixExpression): ExpMatrix
  36. def exp(x: VectorExpression): ExpVector
  37. def expm1(x: MatrixExpression): Expm1Matrix
  38. def expm1(x: VectorExpression): Expm1Vector
  39. def eye(m: Int, n: Int): DenseMatrix

    Returns an m-by-n identity matrix.

  40. def eye(n: Int): DenseMatrix

    Returns an n-by-n identity matrix.

  41. def floor(x: MatrixExpression): FloorMatrix
  42. def floor(x: VectorExpression): FloorVector
  43. def ftest(x: Array[Double], y: Array[Double]): FTest

    Test if the arrays x and y have significantly different variances.

    Test if the arrays x and y have significantly different variances. Small values of p-value indicate that the two arrays have significantly different variances.

  44. def gamma(x: Double): Double

    Gamma function.

    Gamma function. Lanczos approximation (6 terms).

  45. def inv(A: MatrixExpression): DenseMatrix

    Returns the inverse of matrix.

  46. def inv(A: DenseMatrix): DenseMatrix

    Returns the inverse of matrix.

  47. def inverf(p: Double): Double

    The inverse error function.

  48. def inverfc(p: Double): Double

    The inverse complementary error function.

  49. def kendalltest(x: Array[Double], y: Array[Double]): CorTest

    Kendall rank correlation test.

    Kendall rank correlation test. The Kendall Tau Rank Correlation Coefficient is used to measure the degree of correspondence between sets of rankings where the measures are not equidistant. It is used with non-parametric data. The p-value is calculated by approximation, which is good for n > 10.

  50. def kstest(x: Array[Double], y: Array[Double]): KSTest

    The two-sample KS test for the null hypothesis that the data sets are drawn from the same distribution.

    The two-sample KS test for the null hypothesis that the data sets are drawn from the same distribution. Small values of p-value show that the cumulative distribution function of x is significantly different from that of y. The arrays x and y are modified by being sorted into ascending order.

  51. def kstest(x: Array[Double], y: Distribution): KSTest

    The one-sample KS test for the null hypothesis that the data set x is drawn from the given distribution.

    The one-sample KS test for the null hypothesis that the data set x is drawn from the given distribution. Small values of p-value show that the cumulative distribution function of x is significantly different from the given distribution. The array x is modified by being sorted into ascending order.

  52. def lgamma(x: Double): Double

    log of the Gamma function.

    log of the Gamma function. Lanczos approximation (6 terms)

  53. def log(x: MatrixExpression): LogMatrix
  54. def log(x: VectorExpression): LogVector
  55. def log10(x: MatrixExpression): Log10Matrix
  56. def log10(x: VectorExpression): Log10Vector
  57. def log1p(x: MatrixExpression): Log1pMatrix
  58. def log1p(x: VectorExpression): Log1pVector
  59. def log2(x: MatrixExpression): Log2Matrix
  60. def log2(x: VectorExpression): Log2Vector
  61. def lu(A: MatrixExpression): LU

    LU decomposition.

  62. def lu(A: DenseMatrix): LU

    LU decomposition.

  63. def lu(A: Array[Array[Double]]): LU

    LU decomposition.

  64. implicit def matrix2MatrixExpression(x: DenseMatrix): MatrixLift
  65. implicit def matrixExpression2Array(exp: MatrixExpression): DenseMatrix
  66. def ones(m: Int, n: Int): DenseMatrix

    Returns an m-by-n matrix of all ones.

  67. def ones(n: Int): DenseMatrix

    Returns an n-by-n matrix of all ones.

  68. def pearsontest(x: Array[Double], y: Array[Double]): CorTest

    Pearson correlation coefficient test.

  69. implicit def pimpArray2D(data: Array[Array[Double]]): PimpedArray2D
  70. implicit def pimpDouble(x: Double): PimpedDouble
  71. implicit def pimpDoubleArray(data: Array[Double]): PimpedDoubleArray
  72. implicit def pimpIntArray(data: Array[Int]): PimpedArray[Int]
  73. implicit def pimpMatrix(matrix: DenseMatrix): PimpedMatrix
  74. def qr(A: MatrixExpression): QR

    QR decomposition.

  75. def qr(A: DenseMatrix): QR

    QR decomposition.

  76. def qr(A: Array[Array[Double]]): QR

    QR decomposition.

  77. def randn(m: Int, n: Int, mu: Double = 0.0, sigma: Double = 1.0): DenseMatrix

    Returns an m-by-n matrix of normally distributed random numbers.

  78. def rank(A: MatrixExpression): Int

    Returns the rank of matrix.

  79. def rank(A: DenseMatrix): Int

    Returns the rank of matrix.

  80. def round(x: MatrixExpression): RoundMatrix
  81. def round(x: VectorExpression): RoundVector
  82. def sin(x: MatrixExpression): SinMatrix
  83. def sin(x: VectorExpression): SinVector
  84. def spearmantest(x: Array[Double], y: Array[Double]): CorTest

    Spearman rank correlation coefficient test.

    Spearman rank correlation coefficient test. The Spearman Rank Correlation Coefficient is a form of the Pearson coefficient with the data converted to rankings (ie. when variables are ordinal). It can be used when there is non-parametric data and hence Pearson cannot be used.

    The raw scores are converted to ranks and the differences between the ranks of each observation on the two variables are calculated.

    The p-value is calculated by approximation, which is good for n > 10.

  85. def sqrt(x: MatrixExpression): SqrtMatrix
  86. def sqrt(x: VectorExpression): SqrtVector
  87. def svd(A: DenseMatrix, k: Int, kappa: Double = 1E-8, maxIter: Int = -1): SVD

    SVD decomposition.

  88. def svd(A: MatrixExpression): SVD

    SVD decomposition.

  89. def svd(A: DenseMatrix): SVD

    SVD decomposition.

  90. def svd(A: Array[Array[Double]]): SVD

    SVD decomposition.

  91. def tan(x: MatrixExpression): TanMatrix
  92. def tan(x: VectorExpression): TanVector
  93. def tanh(x: MatrixExpression): TanhMatrix
  94. def tanh(x: VectorExpression): TanhVector
  95. def trace(A: Matrix): Double

    Returns the trace of matrix.

  96. def ttest(x: Array[Double], y: Array[Double]): TTest

    Given the paired arrays x and y, test if they have significantly different means.

    Given the paired arrays x and y, test if they have significantly different means. Small values of p-value indicate that the two arrays have significantly different means.

  97. def ttest(x: Array[Double], mean: Double): TTest

    Independent one-sample t-test whether the mean of a normally distributed population has a value specified in a null hypothesis.

    Independent one-sample t-test whether the mean of a normally distributed population has a value specified in a null hypothesis. Small values of p-value indicate that the array has significantly different mean.

  98. def ttest2(x: Array[Double], y: Array[Double], equalVariance: Boolean = false): TTest

    Test if the arrays x and y have significantly different means.

    Test if the arrays x and y have significantly different means. Small values of p-value indicate that the two arrays have significantly different means.

    equalVariance

    true if the data arrays are assumed to be drawn from populations with the same true variance. Otherwise, The data arrays are allowed to be drawn from populations with unequal variances.

  99. implicit def vectorExpression2Array(exp: VectorExpression): Array[Double]
  100. def zeros(m: Int, n: Int): DenseMatrix

    Returns an m-by-n zero matrix.

  101. def zeros(n: Int): DenseMatrix

    Returns an n-by-n zero matrix.

Inherited from AnyRef

Inherited from Any

Ungrouped