Packages

  • package root

    Smile (Statistical Machine Intelligence and Learning Engine) is a fast and comprehensive machine learning, NLP, linear algebra, graph, interpolation, and visualization system in Java and Scala.

    Smile (Statistical Machine Intelligence and Learning Engine) is a fast and comprehensive machine learning, NLP, linear algebra, graph, interpolation, and visualization system in Java and Scala. With advanced data structures and algorithms, Smile delivers state-of-art performance.

    Smile covers every aspect of machine learning, including classification, regression, clustering, association rule mining, feature selection, manifold learning, multidimensional scaling, genetic algorithms, missing value imputation, efficient nearest neighbor search, etc.

    Definition Classes
    root
  • package smile
    Definition Classes
    root
  • package validation

    Model validation.

    Model validation.

    Definition Classes
    smile
  • bootstrap
  • cv
  • loocv
  • validate

object validate

Linear Supertypes
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. validate
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. Protected

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##: Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def classification[M <: DataFrameClassifier](formula: Formula, train: DataFrame, test: DataFrame)(trainer: (Formula, DataFrame) => M): ClassificationValidation[M]

    Test a generic classifier.

    Test a generic classifier. The accuracy will be measured and printed out on standard output.

    train

    training data.

    test

    test data.

    trainer

    a code block to return a classifier trained on the given data.

    returns

    the trained classifier.

  6. def classification[T <: AnyRef, M <: Classifier[T]](x: Array[T], y: Array[Int], testx: Array[T], testy: Array[Int])(trainer: (Array[T], Array[Int]) => M): ClassificationValidation[M]

    Test a generic classifier.

    Test a generic classifier. The accuracy will be measured and printed out on standard output.

    T

    the type of training and test data.

    x

    training data.

    y

    training labels.

    testx

    test data.

    testy

    test data labels.

    trainer

    a code block to return a classifier trained on the given data.

    returns

    the trained classifier.

  7. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.CloneNotSupportedException]) @native()
  8. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  9. def equals(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef → Any
  10. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.Throwable])
  11. final def getClass(): Class[_ <: AnyRef]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  12. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  13. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  14. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  15. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  16. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  17. def regression[M <: DataFrameRegression](formula: Formula, train: DataFrame, test: DataFrame)(trainer: (Formula, DataFrame) => M): RegressionValidation[M]

    Test a generic classifier.

    Test a generic classifier. The accuracy will be measured and printed out on standard output.

    train

    training data.

    test

    test data.

    trainer

    a code block to return a classifier trained on the given data.

    returns

    the trained classifier.

  18. def regression[T <: AnyRef, M <: Regression[T]](x: Array[T], y: Array[Double], testx: Array[T], testy: Array[Double])(trainer: (Array[T], Array[Double]) => M): RegressionValidation[M]

    Test a generic classifier.

    Test a generic classifier. The accuracy will be measured and printed out on standard output.

    T

    the type of training and test data.

    x

    training data.

    y

    training labels.

    testx

    test data.

    testy

    test data labels.

    trainer

    a code block to return a classifier trained on the given data.

    returns

    the trained classifier.

  19. final def synchronized[T0](arg0: => T0): T0
    Definition Classes
    AnyRef
  20. def toString(): String
    Definition Classes
    AnyRef → Any
  21. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])
  22. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])
  23. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException]) @native()

Inherited from AnyRef

Inherited from Any

Ungrouped