Packages

c

org.apache.spark.sql.execution.datasources

TextBasedFileFormat

abstract class TextBasedFileFormat extends FileFormat

The base class file format that is based on text file.

Linear Supertypes
FileFormat, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. TextBasedFileFormat
  2. FileFormat
  3. AnyRef
  4. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new TextBasedFileFormat()

Abstract Value Members

  1. abstract def inferSchema(sparkSession: SparkSession, options: Map[String, String], files: Seq[FileStatus]): Option[StructType]

    When possible, this method should return the schema of the given files.

    When possible, this method should return the schema of the given files. When the format does not support inference, or no valid files are given should return None. In these cases Spark will require that user specify the schema manually.

    Definition Classes
    FileFormat
  2. abstract def prepareWrite(sparkSession: SparkSession, job: Job, options: Map[String, String], dataSchema: StructType): OutputWriterFactory

    Prepares a write job and returns an OutputWriterFactory.

    Prepares a write job and returns an OutputWriterFactory. Client side job preparation can be put here. For example, user defined output committer can be configured here by setting the output committer class in the conf of spark.sql.sources.outputCommitterClass.

    Definition Classes
    FileFormat

Concrete Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def buildReader(sparkSession: SparkSession, dataSchema: StructType, partitionSchema: StructType, requiredSchema: StructType, filters: Seq[Filter], options: Map[String, String], hadoopConf: Configuration): (PartitionedFile) ⇒ Iterator[InternalRow]

    Returns a function that can be used to read a single file in as an Iterator of InternalRow.

    Returns a function that can be used to read a single file in as an Iterator of InternalRow.

    dataSchema

    The global data schema. It can be either specified by the user, or reconciled/merged from all underlying data files. If any partition columns are contained in the files, they are preserved in this schema.

    partitionSchema

    The schema of the partition column row that will be present in each PartitionedFile. These columns should be appended to the rows that are produced by the iterator.

    requiredSchema

    The schema of the data that should be output for each row. This may be a subset of the columns that are present in the file if column pruning has occurred.

    filters

    A set of filters than can optionally be used to reduce the number of rows output

    options

    A set of string -> string configuration options.

    Attributes
    protected
    Definition Classes
    FileFormat
  6. def buildReaderWithPartitionValues(sparkSession: SparkSession, dataSchema: StructType, partitionSchema: StructType, requiredSchema: StructType, filters: Seq[Filter], options: Map[String, String], hadoopConf: Configuration): (PartitionedFile) ⇒ Iterator[InternalRow]

    Exactly the same as buildReader except that the reader function returned by this method appends partition values to InternalRows produced by the reader function buildReader returns.

    Exactly the same as buildReader except that the reader function returned by this method appends partition values to InternalRows produced by the reader function buildReader returns.

    Definition Classes
    FileFormat
  7. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  8. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  10. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  12. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  13. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  14. def isSplitable(sparkSession: SparkSession, options: Map[String, String], path: Path): Boolean

    Returns whether a file with path could be split or not.

    Returns whether a file with path could be split or not.

    Definition Classes
    TextBasedFileFormatFileFormat
  15. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  16. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  17. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  18. def supportBatch(sparkSession: SparkSession, dataSchema: StructType): Boolean

    Returns whether this format supports returning columnar batch or not.

    Returns whether this format supports returning columnar batch or not.

    TODO: we should just have different traits for the different formats.

    Definition Classes
    FileFormat
  19. def supportDataType(dataType: DataType): Boolean

    Returns whether this format supports the given DataType in read/write path.

    Returns whether this format supports the given DataType in read/write path. By default all data types are supported.

    Definition Classes
    FileFormat
  20. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  21. def toString(): String
    Definition Classes
    AnyRef → Any
  22. def vectorTypes(requiredSchema: StructType, partitionSchema: StructType, sqlConf: SQLConf): Option[Seq[String]]

    Returns concrete column vector class names for each column to be used in a columnar batch if this format supports returning columnar batch.

    Returns concrete column vector class names for each column to be used in a columnar batch if this format supports returning columnar batch.

    Definition Classes
    FileFormat
  23. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  24. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  25. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()

Inherited from FileFormat

Inherited from AnyRef

Inherited from Any

Ungrouped