japgolly.scalajs.react.extra.Px$
See thePx companion class
object Px
Attributes
Members list
Type members
Classlikes
object AutoValue
Import this to avoid the need to call .value()
on your Px
s.
Import this to avoid the need to call .value()
on your Px
s.
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
AutoValue.type
sealed abstract class Derivative[A] extends Px[A]
Attributes
- Supertypes
- Known subtypes
sealed abstract class DerivativeBase[A, B, C](xa: Px[A], derive: A => B) extends Derivative[C]
Attributes
- Supertypes
- Known subtypes
Attributes
- Companion
- object
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass AnyValtrait Matchableclass AnyShow all
object Extract
final class FlatMap[A, B](xa: Px[A], f: A => Px[B]) extends DerivativeBase[A, Px[B], B]
A Px[B]
dependent on the value of some Px[A]
.
A Px[B]
dependent on the value of some Px[A]
.
Attributes
- Supertypes
final class FromThunk[A](thunk: () => A) extends AnyVal
Attributes
- Supertypes
-
class AnyValtrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
object ManualCollection
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
ManualCollection.type
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
final class Map[A, B](xa: Px[A], f: A => B) extends DerivativeBase[A, B, B]
A value B
dependent on the value of some Px[A]
.
A value B
dependent on the value of some Px[A]
.
Attributes
- Supertypes
Types
Value members
Concrete methods
def apply16[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Z](pa: Px[A], pb: Px[B], pc: Px[C], pd: Px[D], pe: Px[E], pf: Px[F], pg: Px[G], ph: Px[H], pi: Px[I], pj: Px[J], pk: Px[K], pl: Px[L], pm: Px[M], pn: Px[N], po: Px[O], pp: Px[P])(z: (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P) => Z): Px[Z]
def apply17[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, Z](pa: Px[A], pb: Px[B], pc: Px[C], pd: Px[D], pe: Px[E], pf: Px[F], pg: Px[G], ph: Px[H], pi: Px[I], pj: Px[J], pk: Px[K], pl: Px[L], pm: Px[M], pn: Px[N], po: Px[O], pp: Px[P], pq: Px[Q])(z: (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q) => Z): Px[Z]
def apply18[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, Z](pa: Px[A], pb: Px[B], pc: Px[C], pd: Px[D], pe: Px[E], pf: Px[F], pg: Px[G], ph: Px[H], pi: Px[I], pj: Px[J], pk: Px[K], pl: Px[L], pm: Px[M], pn: Px[N], po: Px[O], pp: Px[P], pq: Px[Q], pr: Px[R])(z: (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R) => Z): Px[Z]
def apply19[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, Z](pa: Px[A], pb: Px[B], pc: Px[C], pd: Px[D], pe: Px[E], pf: Px[F], pg: Px[G], ph: Px[H], pi: Px[I], pj: Px[J], pk: Px[K], pl: Px[L], pm: Px[M], pn: Px[N], po: Px[O], pp: Px[P], pq: Px[Q], pr: Px[R], ps: Px[S])(z: (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S) => Z): Px[Z]
def apply20[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, Z](pa: Px[A], pb: Px[B], pc: Px[C], pd: Px[D], pe: Px[E], pf: Px[F], pg: Px[G], ph: Px[H], pi: Px[I], pj: Px[J], pk: Px[K], pl: Px[L], pm: Px[M], pn: Px[N], po: Px[O], pp: Px[P], pq: Px[Q], pr: Px[R], ps: Px[S], pt: Px[T])(z: (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T) => Z): Px[Z]
def apply21[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, Z](pa: Px[A], pb: Px[B], pc: Px[C], pd: Px[D], pe: Px[E], pf: Px[F], pg: Px[G], ph: Px[H], pi: Px[I], pj: Px[J], pk: Px[K], pl: Px[L], pm: Px[M], pn: Px[N], po: Px[O], pp: Px[P], pq: Px[Q], pr: Px[R], ps: Px[S], pt: Px[T], pu: Px[U])(z: (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U) => Z): Px[Z]
def apply22[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, Z](pa: Px[A], pb: Px[B], pc: Px[C], pd: Px[D], pe: Px[E], pf: Px[F], pg: Px[G], ph: Px[H], pi: Px[I], pj: Px[J], pk: Px[K], pl: Px[L], pm: Px[M], pn: Px[N], po: Px[O], pp: Px[P], pq: Px[Q], pr: Px[R], ps: Px[S], pt: Px[T], pu: Px[U], pv: Px[V])(z: (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V) => Z): Px[Z]
In this article