Object

dlm.model

Dlm

Related Doc: package model

Permalink

object Dlm

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Dlm
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. case class Model(f: ObservationMatrix, g: SystemMatrix) extends Product with Serializable

    Permalink

    Definition of a DLM

  2. type Observation = DenseVector[Double]

    Permalink
  3. type ObservationMatrix = (Time) ⇒ DenseMatrix[Double]

    Permalink
  4. case class Parameters(v: DenseMatrix[Double], w: DenseMatrix[Double], m0: DenseVector[Double], c0: DenseMatrix[Double]) extends Product with Serializable

    Permalink

    Parameters of a DLM

  5. type State = MultivariateGaussian

    Permalink
  6. type SystemMatrix = (Time) ⇒ DenseMatrix[Double]

    Permalink
  7. type Time = Int

    Permalink

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. implicit def addModel: Semigroup[Model]

    Permalink

    Dynamic Linear Models can be combined in order to model different time dependent phenomena, for instance seasonal with trend

  5. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  6. def blockDiagonal(a: DenseMatrix[Double], b: DenseMatrix[Double]): DenseMatrix[Double]

    Permalink

    Build a block diagonal matrix by combining two matrices of the same size TODO: Test and check this function

  7. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  10. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. def forecast(mod: Model, mt: DenseVector[Double], ct: DenseMatrix[Double], time: Time, p: Parameters): Stream[(Time, Double, Double)]

    Permalink

    Forecast a DLM from a state

  12. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  13. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  14. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  15. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  16. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  17. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  18. def outerSumModel(x: Model, y: Model): Model

    Permalink

    Similar Dynamic Linear Models can be combined in order to model multiple similar times series in a vectorised way

  19. def outerSumParameters(x: Parameters, y: Parameters): Parameters

    Permalink
  20. def polynomial(order: Int): Model

    Permalink
  21. def regression(x: Array[DenseVector[Double]]): Model

    Permalink

    A first order regression model with intercept

  22. def rotationMatrix(theta: Double): DenseMatrix[Double]

    Permalink

    Build a 2 x 2 rotation matrix

  23. def seasonal(period: Int, harmonics: Int): Model

    Permalink

    Create a seasonal model with fourier components in the system evolution matrix

  24. def simStep(mod: Model, x: DenseVector[Double], time: Time, p: Parameters): Rand[(Data, DenseVector[Double])]

    Permalink

    Simulate a single step from a DLM

  25. def simulate(startTime: Time, mod: Model, p: Parameters): Process[(Data, DenseVector[Double])]

    Permalink

    Simulate from a DLM

  26. def simulateState(mod: Model, w: DenseMatrix[Double]): Process[(Time, DenseVector[Double])]

    Permalink

  27. def stepForecast(mod: Model, time: Time, mt: DenseVector[Double], ct: DenseMatrix[Double], p: Parameters): (Time, DenseVector[Double], DenseMatrix[Double], DenseVector[Double], DenseMatrix[Double])

    Permalink

    Perform a single forecast step, equivalent to performing the Kalman Filter Without an observation of the process

    Perform a single forecast step, equivalent to performing the Kalman Filter Without an observation of the process

    mod

    a DLM specification

    time

    the current time

    mt

    the mean of the latent state at time t

    ct

    the variance of the latent state at time t

    p

    the parameters of the DLM

  28. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  29. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  30. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  31. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  32. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped