Package

dlm

model

Permalink

package model

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. model
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. type ConditionalLl = (Observation, DenseVector[Double]) ⇒ Double

    Permalink
  2. case class Data(time: Time, observation: Option[Observation]) extends Product with Serializable

    Permalink

    A single observation of a model

  3. case class InverseGamma(shape: Double, scale: Double)(implicit rand: RandBasis = Rand) extends ContinuousDistr[Double] with Moments[Double, Double] with Product with Serializable

    Permalink
  4. case class InverseWishart(nu: Double, psi: DenseMatrix[Double])(implicit rand: RandBasis = Rand) extends ContinuousDistr[DenseMatrix[Double]] with Moments[DenseMatrix[Double], DenseMatrix[Double]] with Product with Serializable

    Permalink
  5. type LatentState = List[(Time, DenseVector[Double])]

    Permalink
  6. case class MultivariateGaussianSvd(mu: DenseVector[Double], cov: DenseMatrix[Double])(implicit rand: RandBasis = Rand) extends ContinuousDistr[DenseVector[Double]] with Product with Serializable

    Permalink
  7. type Observation = DenseVector[Double]

    Permalink
  8. type ObservationMatrix = (Time) ⇒ DenseMatrix[Double]

    Permalink
  9. type SystemMatrix = (Time) ⇒ DenseMatrix[Double]

    Permalink
  10. type Time = Int

    Permalink
  11. trait TimeSeries[F[_]] extends Monad[F] with Traverse[F]

    Permalink
  12. case class Wishart(n: Double, scale: DenseMatrix[Double])(implicit rand: RandBasis = Rand) extends ContinuousDistr[DenseMatrix[Double]] with Moments[DenseMatrix[Double], DenseMatrix[Double]] with Product with Serializable

    Permalink

Value Members

  1. object Dglm

    Permalink

    DGLM

  2. object Dlm

    Permalink
  3. object GibbsSampling extends App

    Permalink
  4. object GibbsWishart

    Permalink

    This class learns a correlated system matrix using the InverseWishart prior on the system noise matrix

  5. object KalmanFilter

    Permalink
  6. object Metropolis

    Permalink
  7. object MetropolisHastings

    Permalink
  8. object ParticleFilter

    Permalink

    The particle filter can be used for inference of DGLMs ie.

    The particle filter can be used for inference of DGLMs ie. Dynamic Generalised Linear Models, where the observation distribution is not Gaussian

  9. object ParticleGibbs

    Permalink

    Particle Gibbs Sampler for A Dynamic Generalised Linear Model

  10. object ParticleGibbsAncestor extends App

    Permalink

    Particle Gibbs with Ancestor Sampling Requires a Tractable state evolution kernel

  11. object Smoothing

    Permalink
  12. object Streaming

    Permalink

    Utility class for parallelism and IO

  13. object TimeSeries extends Serializable

    Permalink
  14. implicit def dlm2dglm(dlmModel: Model): Model

    Permalink

    A Gaussian DLM can be implicitly converted to a DGLM Then particle filtering methods can be used on Gaussian Models

  15. implicit val randMonad: Monad[Rand]

    Permalink

Inherited from AnyRef

Inherited from Any

Ungrouped