object Dlm

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Dlm
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. case class Data (time: Double, observation: DenseVector[Option[Double]]) extends Product with Serializable

    A single observation of a model

  2. case class Model (f: (Double) ⇒ DenseMatrix[Double], g: (Double) ⇒ DenseMatrix[Double]) extends Product with Serializable

    Definition of a DLM

  3. case class Parameters (v: DenseMatrix[Double], w: DenseMatrix[Double], m0: DenseVector[Double], c0: DenseMatrix[Double]) extends Product with Serializable

    Parameters of a DLM

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. def angle(period: Int)(dt: Double): Double

    Get the angle of the rotation for the seasonal model

  5. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  6. def blockDiagonal(a: DenseMatrix[Double], b: DenseMatrix[Double]): DenseMatrix[Double]

    Build a block diagonal matrix by combining two matrices of the same size

  7. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. def composeModels(x: Model, y: Model): Model

    Dynamic Linear Models can be combined in order to model different time dependent phenomena, for instance seasonal with trend

  9. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  10. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  11. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  12. def forecast(mod: Model, mt: DenseVector[Double], ct: DenseMatrix[Double], time: Double, p: Parameters): Stream[(Double, Double, Double)]

    Forecast a DLM from a state

    Forecast a DLM from a state

    mod

    a DLM

    mt

    the posterior mean of the state at time t (start of forecast)

    ct

    the posterior variance of the state at time t (start of forecast)

    time

    the starting time of the forecast

    p

    the parameters of the DLM

    returns

    a Stream of forecasts

  13. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
  14. def hashCode(): Int
    Definition Classes
    AnyRef → Any
  15. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  16. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  17. final def notify(): Unit
    Definition Classes
    AnyRef
  18. final def notifyAll(): Unit
    Definition Classes
    AnyRef
  19. def outerSumModel(x: Model, y: Model): Model

    Similar Dynamic Linear Models can be combined in order to model multiple similar times series in a vectorised way

  20. def outerSumParameters(x: Parameters, y: Parameters): Parameters
  21. def polynomial(order: Int): Model

    A polynomial model

  22. def regression(x: Array[DenseVector[Double]]): Model

    A first order regression model with intercept

  23. def rotationMatrix(theta: Double): DenseMatrix[Double]

    Build a 2 x 2 rotation matrix

  24. def seasonal(period: Int, harmonics: Int): Model

    Create a seasonal model with fourier components in the system evolution matrix

    Create a seasonal model with fourier components in the system evolution matrix

    period

    the period of the seasonality

    harmonics

    the number of harmonics in the seasonal model

    returns

    a seasonal DLM model

  25. def seasonalG(period: Int, harmonics: Int)(dt: Double): DenseMatrix[Double]

    Build the G matrix for the system evolution

  26. def simStep(mod: Model, x: DenseVector[Double], time: Double, p: Parameters, dt: Double): Rand[(Data, DenseVector[Double])]

    Simulate a single step from a DLM, used in simulateRegular

    Simulate a single step from a DLM, used in simulateRegular

    mod

    a DLM model

    x

    a realisation from the latent state at time t-1

    time

    the current time

    p

    the parameters of the DLM model

    dt

    the time increment between successive realisations of the process

  27. def simulate(times: Iterable[Double], mod: Model, p: Parameters): Iterable[(Data, DenseVector[Double])]

    Simulate from a DLM at the given times

  28. def simulateRegular(startTime: Double, mod: Model, p: Parameters, dt: Double): Process[(Data, DenseVector[Double])]

    Simulate from a DLM

  29. def simulateState(times: Iterable[Double], g: (Double) ⇒ DenseMatrix[Double], p: Parameters, init: (Double, DenseVector[Double])): Iterable[(Double, DenseVector[Double])]

    Simulate the state at the given times

  30. def simulateStateRegular(mod: Model, w: DenseMatrix[Double]): Process[(Double, DenseVector[Double])]

    Simulate the latent-state from a DLM model

  31. def stepForecast(mod: Model, time: Double, dt: Double, mt: DenseVector[Double], ct: DenseMatrix[Double], p: Parameters): (Double, DenseVector[Double], DenseMatrix[Double], DenseVector[Double], DenseMatrix[Double])

    Perform a single forecast step, equivalent to performing the Kalman Filter Without an observation of the process

    Perform a single forecast step, equivalent to performing the Kalman Filter Without an observation of the process

    mod

    a DLM specification

    time

    the current time

    mt

    the mean of the latent state at time t

    ct

    the variance of the latent state at time t

    p

    the parameters of the DLM

  32. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  33. def toString(): String
    Definition Classes
    AnyRef → Any
  34. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  35. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  36. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped