object Dlm
- Alphabetic
- By Inheritance
- Dlm
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Type Members
-
case class
Data
(time: Double, observation: DenseVector[Option[Double]]) extends Product with Serializable
A single observation of a model
-
case class
Model
(f: (Double) ⇒ DenseMatrix[Double], g: (Double) ⇒ DenseMatrix[Double]) extends Product with Serializable
Definition of a DLM
-
case class
Parameters
(v: DenseMatrix[Double], w: DenseMatrix[Double], m0: DenseVector[Double], c0: DenseMatrix[Double]) extends Product with Serializable
Parameters of a DLM
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
angle(period: Int)(dt: Double): Double
Get the angle of the rotation for the seasonal model
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
blockDiagonal(a: DenseMatrix[Double], b: DenseMatrix[Double]): DenseMatrix[Double]
Build a block diagonal matrix by combining two matrices of the same size
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
def
composeModels(x: Model, y: Model): Model
Dynamic Linear Models can be combined in order to model different time dependent phenomena, for instance seasonal with trend
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
forecast(mod: Model, mt: DenseVector[Double], ct: DenseMatrix[Double], time: Double, p: Parameters): Stream[(Double, Double, Double)]
Forecast a DLM from a state
Forecast a DLM from a state
- mod
a DLM
- mt
the posterior mean of the state at time t (start of forecast)
- ct
the posterior variance of the state at time t (start of forecast)
- time
the starting time of the forecast
- p
the parameters of the DLM
- returns
a Stream of forecasts
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
-
def
outerSumModel(x: Model, y: Model): Model
Similar Dynamic Linear Models can be combined in order to model multiple similar times series in a vectorised way
- def outerSumParameters(x: Parameters, y: Parameters): Parameters
-
def
polynomial(order: Int): Model
A polynomial model
-
def
regression(x: Array[DenseVector[Double]]): Model
A first order regression model with intercept
-
def
rotationMatrix(theta: Double): DenseMatrix[Double]
Build a 2 x 2 rotation matrix
-
def
seasonal(period: Int, harmonics: Int): Model
Create a seasonal model with fourier components in the system evolution matrix
Create a seasonal model with fourier components in the system evolution matrix
- period
the period of the seasonality
- harmonics
the number of harmonics in the seasonal model
- returns
a seasonal DLM model
-
def
seasonalG(period: Int, harmonics: Int)(dt: Double): DenseMatrix[Double]
Build the G matrix for the system evolution
-
def
simStep(mod: Model, x: DenseVector[Double], time: Double, p: Parameters, dt: Double): Rand[(Data, DenseVector[Double])]
Simulate a single step from a DLM, used in simulateRegular
Simulate a single step from a DLM, used in simulateRegular
- mod
a DLM model
- x
a realisation from the latent state at time t-1
- time
the current time
- p
the parameters of the DLM model
- dt
the time increment between successive realisations of the process
-
def
simulate(times: Iterable[Double], mod: Model, p: Parameters): Iterable[(Data, DenseVector[Double])]
Simulate from a DLM at the given times
-
def
simulateRegular(startTime: Double, mod: Model, p: Parameters, dt: Double): Process[(Data, DenseVector[Double])]
Simulate from a DLM
-
def
simulateState(times: Iterable[Double], g: (Double) ⇒ DenseMatrix[Double], p: Parameters, init: (Double, DenseVector[Double])): Iterable[(Double, DenseVector[Double])]
Simulate the state at the given times
-
def
simulateStateRegular(mod: Model, w: DenseMatrix[Double]): Process[(Double, DenseVector[Double])]
Simulate the latent-state from a DLM model
-
def
stepForecast(mod: Model, time: Double, dt: Double, mt: DenseVector[Double], ct: DenseMatrix[Double], p: Parameters): (Double, DenseVector[Double], DenseMatrix[Double], DenseVector[Double], DenseMatrix[Double])
Perform a single forecast step, equivalent to performing the Kalman Filter Without an observation of the process
Perform a single forecast step, equivalent to performing the Kalman Filter Without an observation of the process
- mod
a DLM specification
- time
the current time
- mt
the mean of the latent state at time t
- ct
the variance of the latent state at time t
- p
the parameters of the DLM
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )