o

dlm.model

StudentT

object StudentT

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. StudentT
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. case class State(p: Parameters, variances: Vector[Double], state: Vector[(Double, DenseVector[Double])]) extends Product with Serializable

    The state of the Markov chain for the Student's t-distribution gibbs sampler

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  8. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  10. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  11. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  12. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  13. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  14. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  15. def sample(dof: Int, data: Vector[Data], priorW: InverseGamma, mod: Model, params: Parameters): Process[State]

    Perform Gibbs Sampling for the Student t-distributed model

    Perform Gibbs Sampling for the Student t-distributed model

    dof

    the degrees of freedom for the Student's t distributed observation dist

    priorW

    the prior distribution of the system noise matrix

    mod

    the DGLM representing the Student's t model

    params

    the initial parameters

  16. def sampleScaleT(dof: Int)(s: State): Rand[State]

    Sample the (square of the) scale of the Student's t distribution

    Sample the (square of the) scale of the Student's t distribution

    dof

    the degrees of freedom of the Student's t observation distribution

    s

    the current state of the MCMC algorithm

  17. def sampleState(variances: Vector[Double], mod: Model, observations: Vector[Data], params: Parameters): Rand[Vector[(Double, DenseVector[Double])]]

    Sample the state, incorporating the drawn variances for each observation

    Sample the state, incorporating the drawn variances for each observation

    mod

    the DLM

  18. def sampleSystemMatrix(mod: Model, priorW: InverseGamma)(s: State): Rand[State]
  19. def sampleVariances(ys: Vector[Data], f: (Double) ⇒ DenseMatrix[Double], dof: Int): (State) ⇒ Rand[State]

    Sample the variances of the Normal distribution These are auxilliary variables required when calculating the one-step prediction in the Kalman Filter

    Sample the variances of the Normal distribution These are auxilliary variables required when calculating the one-step prediction in the Kalman Filter

    ys

    an array of observations of length N

    f

    the observation matrix

    dof

    the degrees of freedom of the Student's t-distribution

    returns

    a Rand distribution over the list of N variances

  20. def step(dof: Int, data: Vector[Data], priorW: InverseGamma, mod: Model): Kleisli[Rand, State, State]

    A single step of the Student t-distribution Gibbs Sampler

  21. def stepState(mod: Model, observations: Vector[Data])(s: State): Rand[State]
  22. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  23. def toString(): String
    Definition Classes
    AnyRef → Any
  24. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  25. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  26. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped