public class LowerTriangBandMatrix extends AbstractMatrix
BandMatrix
, but without
superdiagonals.Matrix.Norm
numColumns, numRows
Constructor and Description |
---|
LowerTriangBandMatrix(int n,
int kd)
Constructor for LowerTriangBandMatrix
|
LowerTriangBandMatrix(Matrix A,
int kd)
Constructor for LowerTriangBandMatrix
|
LowerTriangBandMatrix(Matrix A,
int kd,
boolean deep)
Constructor for LowerTriangBandMatrix
|
Modifier and Type | Method and Description |
---|---|
void |
add(int row,
int column,
double value)
A(row,column) += value |
LowerTriangBandMatrix |
copy()
Creates a deep copy of the matrix
|
double |
get(int row,
int column)
Returns
A(row,column) |
double[] |
getData()
Returns the matrix contents
|
Iterator<MatrixEntry> |
iterator() |
Vector |
mult(double alpha,
Vector x,
Vector y)
y = alpha*A*x |
int |
numSubDiagonals()
Returns the number of lower diagonals
|
int |
numSuperDiagonals()
Returns the number of upper diagonals
|
void |
set(int row,
int column,
double value)
A(row,column) = value |
Matrix |
set(Matrix B)
A=B . |
Matrix |
solve(Matrix B,
Matrix X)
X = A\B . |
Vector |
solve(Vector b,
Vector x)
x = A\b . |
Vector |
transMult(double alpha,
Vector x,
Vector y)
y = alpha*AT*x |
Matrix |
transSolve(Matrix B,
Matrix X)
X = AT\B . |
Vector |
transSolve(Vector b,
Vector x)
x = AT\b . |
Matrix |
zero()
Zeros all the entries in the matrix, while preserving any underlying
structure.
|
add, add, check, checkMultAdd, checkMultAdd, checkRank1, checkRank1, checkRank2, checkRank2, checkSize, checkSolve, checkSolve, checkTransABmultAdd, checkTransAmultAdd, checkTransBmultAdd, checkTransMultAdd, checkTranspose, checkTranspose, checkTransRank1, checkTransRank2, isSquare, max, max, mult, mult, mult, multAdd, multAdd, multAdd, multAdd, norm, norm1, normF, normInf, numColumns, numRows, rank1, rank1, rank1, rank1, rank1, rank1, rank2, rank2, rank2, rank2, scale, set, toString, transABmult, transABmult, transABmultAdd, transABmultAdd, transAmult, transAmult, transAmultAdd, transAmultAdd, transBmult, transBmult, transBmultAdd, transBmultAdd, transMult, transMultAdd, transMultAdd, transpose, transpose, transRank1, transRank1, transRank2, transRank2
public LowerTriangBandMatrix(int n, int kd)
n
- Size of the matrix. Since the matrix must be square, this
equals both the number of rows and columnskd
- Number of bands below the main diagonal (subdiagonals)public LowerTriangBandMatrix(Matrix A, int kd)
A
- Matrix to copy contents from. Only the parts of A
that lie within the allocated band are copied over, the rest
is ignoredkd
- Number of bands below the main diagonal (subdiagonals)public LowerTriangBandMatrix(Matrix A, int kd, boolean deep)
A
- Matrix to copy contents from. Only the parts of A
that lie within the allocated band are copied over, the rest
is ignoredkd
- Number of bands below the main diagonal (subdiagonals)deep
- True for a deep copy. For shallow copies, A
must be a banded matrixpublic LowerTriangBandMatrix copy()
Matrix
copy
in interface Matrix
copy
in class AbstractMatrix
public Vector mult(double alpha, Vector x, Vector y)
Matrix
y = alpha*A*x
mult
in interface Matrix
mult
in class AbstractMatrix
x
- Vector of size A.numColumns()
y
- Vector of size A.numRows()
public Vector transMult(double alpha, Vector x, Vector y)
Matrix
y = alpha*AT*x
transMult
in interface Matrix
transMult
in class AbstractMatrix
x
- Vector of size A.numRows()
y
- Vector of size A.numColumns()
public Matrix solve(Matrix B, Matrix X)
Matrix
X = A\B
. Not all matrices support this operation, those
that do not throw UnsupportedOperationException
. Note
that it is often more efficient to use a matrix decomposition and its
associated solversolve
in interface Matrix
solve
in class AbstractMatrix
B
- Matrix with the same number of rows as A
, and
the same number of columns as X
X
- Matrix with a number of rows equal A.numColumns()
,
and the same number of columns as B
public Vector solve(Vector b, Vector x)
Matrix
x = A\b
. Not all matrices support this operation, those
that do not throw UnsupportedOperationException
. Note
that it is often more efficient to use a matrix decomposition and its
associated solversolve
in interface Matrix
solve
in class AbstractMatrix
b
- Vector of size A.numRows()
x
- Vector of size A.numColumns()
public Matrix transSolve(Matrix B, Matrix X)
Matrix
X = AT\B
. Not all matrices support this
operation, those that do not throw
UnsupportedOperationException
. Note that it is often more
efficient to use a matrix decomposition and its associated transpose
solvertransSolve
in interface Matrix
transSolve
in class AbstractMatrix
B
- Matrix with a number of rows equal A.numColumns()
,
and the same number of columns as X
X
- Matrix with the same number of rows as A
, and
the same number of columns as B
public Vector transSolve(Vector b, Vector x)
Matrix
x = AT\b
. Not all matrices support this
operation, those that do not throw
UnsupportedOperationException
. Note that it is often more
efficient to use a matrix decomposition and its associated solvertransSolve
in interface Matrix
transSolve
in class AbstractMatrix
b
- Vector of size A.numColumns()
x
- Vector of size A.numRows()
public double[] getData()
public void add(int row, int column, double value)
Matrix
A(row,column) += value
add
in interface Matrix
add
in class AbstractMatrix
public void set(int row, int column, double value)
Matrix
A(row,column) = value
set
in interface Matrix
set
in class AbstractMatrix
public double get(int row, int column)
Matrix
A(row,column)
get
in interface Matrix
get
in class AbstractMatrix
public int numSubDiagonals()
public int numSuperDiagonals()
public Matrix set(Matrix B)
Matrix
A=B
. The matrices must be of the same sizeset
in interface Matrix
set
in class AbstractMatrix
public Matrix zero()
Matrix
zero
in interface Matrix
zero
in class AbstractMatrix
public Iterator<MatrixEntry> iterator()
iterator
in interface Iterable<MatrixEntry>
iterator
in class AbstractMatrix
Copyright © 2013. All Rights Reserved.