public class LowerSymmBandMatrix extends AbstractMatrix
BandMatrix
, but without superdiagonals.
Upper part of the matrix is implictly known by symmetryMatrix.Norm
numColumns, numRows
Constructor and Description |
---|
LowerSymmBandMatrix(int n,
int kd)
Constructor for LowerSymmBandMatrix
|
LowerSymmBandMatrix(Matrix A,
int kd)
Constructor for LowerSymmBandMatrix
|
LowerSymmBandMatrix(Matrix A,
int kd,
boolean deep)
Constructor for LowerSymmBandMatrix
|
Modifier and Type | Method and Description |
---|---|
void |
add(int row,
int column,
double value)
A(row,column) += value |
LowerSymmBandMatrix |
copy()
Creates a deep copy of the matrix
|
double |
get(int row,
int column)
Returns
A(row,column) |
double[] |
getData()
Returns the matrix contents
|
Iterator<MatrixEntry> |
iterator() |
Vector |
multAdd(double alpha,
Vector x,
Vector y)
y = alpha*A*x + y |
int |
numSubDiagonals()
Returns the number of lower diagonals
|
int |
numSuperDiagonals()
Returns the number of upper diagonals
|
void |
set(int row,
int column,
double value)
A(row,column) = value |
Matrix |
set(Matrix B)
A=B . |
Matrix |
solve(Matrix B,
Matrix X)
X = A\B . |
Vector |
solve(Vector b,
Vector x)
x = A\b . |
Vector |
transMultAdd(double alpha,
Vector x,
Vector y)
y = alpha*AT*x + y |
Matrix |
transpose()
Transposes the matrix in-place.
|
Matrix |
transSolve(Matrix B,
Matrix X)
X = AT\B . |
Vector |
transSolve(Vector b,
Vector x)
x = AT\b . |
Matrix |
zero()
Zeros all the entries in the matrix, while preserving any underlying
structure.
|
add, add, check, checkMultAdd, checkMultAdd, checkRank1, checkRank1, checkRank2, checkRank2, checkSize, checkSolve, checkSolve, checkTransABmultAdd, checkTransAmultAdd, checkTransBmultAdd, checkTransMultAdd, checkTranspose, checkTranspose, checkTransRank1, checkTransRank2, isSquare, max, max, mult, mult, mult, mult, multAdd, multAdd, multAdd, norm, norm1, normF, normInf, numColumns, numRows, rank1, rank1, rank1, rank1, rank1, rank1, rank2, rank2, rank2, rank2, scale, set, toString, transABmult, transABmult, transABmultAdd, transABmultAdd, transAmult, transAmult, transAmultAdd, transAmultAdd, transBmult, transBmult, transBmultAdd, transBmultAdd, transMult, transMult, transMultAdd, transpose, transRank1, transRank1, transRank2, transRank2
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
forEach, spliterator
public LowerSymmBandMatrix(int n, int kd)
n
- Size of the matrix. Since the matrix must be square, this
equals both the number of rows and columnskd
- Number of bands off the main diagonal (off diagonals)public LowerSymmBandMatrix(Matrix A, int kd)
A
- Matrix to copy contents from. Only the parts of A
that lie within the allocated band are copied over, the rest
is ignoredkd
- Number of bands off the main diagonal (off diagonals)public LowerSymmBandMatrix(Matrix A, int kd, boolean deep)
A
- Matrix to copy contents from. Only the parts of A
that lie within the allocated band are copied over, the rest
is ignoredkd
- Number of bands off the main diagonal (off diagonals)deep
- True for a deep copy. For shallow copies, A
must
be a banded matrixpublic void add(int row, int column, double value)
Matrix
A(row,column) += value
public double get(int row, int column)
Matrix
A(row,column)
public void set(int row, int column, double value)
Matrix
A(row,column) = value
public LowerSymmBandMatrix copy()
Matrix
copy
in interface Matrix
copy
in class AbstractMatrix
public Vector multAdd(double alpha, Vector x, Vector y)
Matrix
y = alpha*A*x + y
multAdd
in interface Matrix
multAdd
in class AbstractMatrix
x
- Vector of size A.numColumns()
y
- Vector of size A.numRows()
public Vector transMultAdd(double alpha, Vector x, Vector y)
Matrix
y = alpha*AT*x + y
transMultAdd
in interface Matrix
transMultAdd
in class AbstractMatrix
x
- Vector of size A.numRows()
y
- Vector of size A.numColumns()
public Iterator<MatrixEntry> iterator()
iterator
in interface Iterable<MatrixEntry>
public Matrix solve(Matrix B, Matrix X)
Matrix
X = A\B
. Not all matrices support this operation, those that
do not throw UnsupportedOperationException
. Note that it is
often more efficient to use a matrix decomposition and its associated
solversolve
in interface Matrix
solve
in class AbstractMatrix
B
- Matrix with the same number of rows as A
, and the
same number of columns as X
X
- Matrix with a number of rows equal A.numColumns()
, and the same number of columns as B
public Vector solve(Vector b, Vector x)
Matrix
x = A\b
. Not all matrices support this operation, those that
do not throw UnsupportedOperationException
. Note that it is
often more efficient to use a matrix decomposition and its associated
solversolve
in interface Matrix
solve
in class AbstractMatrix
b
- Vector of size A.numRows()
x
- Vector of size A.numColumns()
public Matrix transSolve(Matrix B, Matrix X)
Matrix
X = AT\B
. Not all matrices support this
operation, those that do not throw
UnsupportedOperationException
. Note that it is often more
efficient to use a matrix decomposition and its associated transpose
solvertransSolve
in interface Matrix
transSolve
in class AbstractMatrix
B
- Matrix with a number of rows equal A.numColumns()
, and the same number of columns as X
X
- Matrix with the same number of rows as A
, and the
same number of columns as B
public Vector transSolve(Vector b, Vector x)
Matrix
x = AT\b
. Not all matrices support this
operation, those that do not throw
UnsupportedOperationException
. Note that it is often more
efficient to use a matrix decomposition and its associated solvertransSolve
in interface Matrix
transSolve
in class AbstractMatrix
b
- Vector of size A.numColumns()
x
- Vector of size A.numRows()
public Matrix transpose()
Matrix
transpose
in interface Matrix
transpose
in class AbstractMatrix
public double[] getData()
public int numSubDiagonals()
public int numSuperDiagonals()
public Matrix set(Matrix B)
Matrix
A=B
. The matrices must be of the same sizeset
in interface Matrix
set
in class AbstractMatrix
Copyright © 2015. All Rights Reserved.