Packages

class T5Transformer extends AnnotatorModel[T5Transformer] with HasSimpleAnnotate[T5Transformer] with ParamsAndFeaturesWritable with WriteTensorflowModel with WriteSentencePieceModel

Linear Supertypes
WriteSentencePieceModel, WriteTensorflowModel, HasSimpleAnnotate[T5Transformer], AnnotatorModel[T5Transformer], CanBeLazy, RawAnnotator[T5Transformer], HasOutputAnnotationCol, HasInputAnnotationCols, HasOutputAnnotatorType, ParamsAndFeaturesWritable, HasFeatures, DefaultParamsWritable, MLWritable, Model[T5Transformer], Transformer, PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. T5Transformer
  2. WriteSentencePieceModel
  3. WriteTensorflowModel
  4. HasSimpleAnnotate
  5. AnnotatorModel
  6. CanBeLazy
  7. RawAnnotator
  8. HasOutputAnnotationCol
  9. HasInputAnnotationCols
  10. HasOutputAnnotatorType
  11. ParamsAndFeaturesWritable
  12. HasFeatures
  13. DefaultParamsWritable
  14. MLWritable
  15. Model
  16. Transformer
  17. PipelineStage
  18. Logging
  19. Params
  20. Serializable
  21. Serializable
  22. Identifiable
  23. AnyRef
  24. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new T5Transformer()
  2. new T5Transformer(uid: String)

Type Members

  1. type AnnotationContent = Seq[Row]

    internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI

    internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI

    Attributes
    protected
    Definition Classes
    AnnotatorModel
  2. type AnnotatorType = String
    Definition Classes
    HasOutputAnnotatorType

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T
    Attributes
    protected
    Definition Classes
    Params
  4. def $$[T](feature: StructFeature[T]): T
    Attributes
    protected
    Definition Classes
    HasFeatures
  5. def $$[K, V](feature: MapFeature[K, V]): Map[K, V]
    Attributes
    protected
    Definition Classes
    HasFeatures
  6. def $$[T](feature: SetFeature[T]): Set[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  7. def $$[T](feature: ArrayFeature[T]): Array[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  8. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  9. def _transform(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): DataFrame
    Attributes
    protected
    Definition Classes
    AnnotatorModel
  10. def afterAnnotate(dataset: DataFrame): DataFrame
    Attributes
    protected
    Definition Classes
    AnnotatorModel
  11. def annotate(annotations: Seq[Annotation]): Seq[Annotation]

    takes a document and annotations and produces new annotations of this annotator's annotation type

    takes a document and annotations and produces new annotations of this annotator's annotation type

    annotations

    Annotations that correspond to inputAnnotationCols generated by previous annotators if any

    returns

    any number of annotations processed for every input annotation. Not necessary one to one relationship

    Definition Classes
    T5TransformerHasSimpleAnnotate
  12. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  13. def beforeAnnotate(dataset: Dataset[_]): Dataset[_]
    Attributes
    protected
    Definition Classes
    AnnotatorModel
  14. final def checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  15. final def clear(param: Param[_]): T5Transformer.this.type
    Definition Classes
    Params
  16. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  17. val configProtoBytes: IntArrayParam

    ConfigProto from tensorflow, serialized into byte array.

    ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()

  18. def copy(extra: ParamMap): T5Transformer

    requirement for annotators copies

    requirement for annotators copies

    Definition Classes
    RawAnnotator → Model → Transformer → PipelineStage → Params
  19. def copyValues[T <: Params](to: T, extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  20. final def defaultCopy[T <: Params](extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  21. def dfAnnotate: UserDefinedFunction

    Wraps annotate to happen inside SparkSQL user defined functions in order to act with org.apache.spark.sql.Column

    Wraps annotate to happen inside SparkSQL user defined functions in order to act with org.apache.spark.sql.Column

    returns

    udf function to be applied to inputCols using this annotator's annotate function as part of ML transformation

    Definition Classes
    HasSimpleAnnotate
  22. val doSample: BooleanParam

    Whether or not to use sampling; use greedy decoding otherwise

  23. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  24. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  25. def explainParam(param: Param[_]): String
    Definition Classes
    Params
  26. def explainParams(): String
    Definition Classes
    Params
  27. def extraValidate(structType: StructType): Boolean
    Attributes
    protected
    Definition Classes
    RawAnnotator
  28. def extraValidateMsg: String

    Override for additional custom schema checks

    Override for additional custom schema checks

    Attributes
    protected
    Definition Classes
    RawAnnotator
  29. final def extractParamMap(): ParamMap
    Definition Classes
    Params
  30. final def extractParamMap(extra: ParamMap): ParamMap
    Definition Classes
    Params
  31. val features: ArrayBuffer[Feature[_, _, _]]
    Definition Classes
    HasFeatures
  32. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  33. def get[T](feature: StructFeature[T]): Option[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  34. def get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  35. def get[T](feature: SetFeature[T]): Option[Set[T]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  36. def get[T](feature: ArrayFeature[T]): Option[Array[T]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  37. final def get[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  38. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  39. def getConfigProtoBytes: Option[Array[Byte]]

  40. final def getDefault[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  41. def getDoSample: Boolean

  42. def getInputCols: Array[String]

    returns

    input annotations columns currently used

    Definition Classes
    HasInputAnnotationCols
  43. def getLazyAnnotator: Boolean
    Definition Classes
    CanBeLazy
  44. def getMaxOutputLength: Int

  45. def getMinOutputLength: Int

  46. def getModelIfNotSet: TensorflowT5

  47. def getNoRepeatNgramSize: Int

  48. final def getOrDefault[T](param: Param[T]): T
    Definition Classes
    Params
  49. final def getOutputCol: String

    Gets annotation column name going to generate

    Gets annotation column name going to generate

    Definition Classes
    HasOutputAnnotationCol
  50. def getParam(paramName: String): Param[Any]
    Definition Classes
    Params
  51. def getRandomSeed: Option[Long]

  52. def getRepetitionPenalty: Double

  53. def getTemperature: Double

  54. def getTopK: Int

  55. def getTopP: Double

  56. final def hasDefault[T](param: Param[T]): Boolean
    Definition Classes
    Params
  57. def hasParam(paramName: String): Boolean
    Definition Classes
    Params
  58. def hasParent: Boolean
    Definition Classes
    Model
  59. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  60. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  61. def initializeLogIfNecessary(isInterpreter: Boolean): Unit
    Attributes
    protected
    Definition Classes
    Logging
  62. val inputAnnotatorTypes: Array[AnnotatorType]

    Output annotator type : TOKEN

    Output annotator type : TOKEN

    Definition Classes
    T5TransformerHasInputAnnotationCols
  63. final val inputCols: StringArrayParam

    columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified

    columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified

    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  64. final def isDefined(param: Param[_]): Boolean
    Definition Classes
    Params
  65. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  66. final def isSet(param: Param[_]): Boolean
    Definition Classes
    Params
  67. def isTraceEnabled(): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  68. val lazyAnnotator: BooleanParam
    Definition Classes
    CanBeLazy
  69. def log: Logger
    Attributes
    protected
    Definition Classes
    Logging
  70. def logDebug(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  71. def logDebug(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  72. def logError(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  73. def logError(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  74. def logInfo(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  75. def logInfo(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  76. def logName: String
    Attributes
    protected
    Definition Classes
    Logging
  77. def logTrace(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  78. def logTrace(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  79. def logWarning(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  80. def logWarning(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  81. val maxOutputLength: IntParam

    Maximum length of the sequence to be generated

  82. val minOutputLength: IntParam

    Minimum length of the sequence to be generated

  83. def msgHelper(schema: StructType): String
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  84. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  85. val noRepeatNgramSize: IntParam

    If set to int > 0, all ngrams of that size can only occur once

  86. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  87. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  88. def onWrite(path: String, spark: SparkSession): Unit
  89. val outputAnnotatorType: String

    Output annotator type : DOCUMENT

    Output annotator type : DOCUMENT

    Definition Classes
    T5TransformerHasOutputAnnotatorType
  90. final val outputCol: Param[String]
    Attributes
    protected
    Definition Classes
    HasOutputAnnotationCol
  91. lazy val params: Array[Param[_]]
    Definition Classes
    Params
  92. var parent: Estimator[T5Transformer]
    Definition Classes
    Model
  93. var randomSeed: Option[Long]

  94. val repetitionPenalty: DoubleParam

    The parameter for repetition penalty.

    The parameter for repetition penalty. 1.0 means no penalty. See this paper <https://arxiv.org/pdf/1909.05858.pdf> for more details

  95. def save(path: String): Unit
    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  96. def set[T](feature: StructFeature[T], value: T): T5Transformer.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  97. def set[K, V](feature: MapFeature[K, V], value: Map[K, V]): T5Transformer.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  98. def set[T](feature: SetFeature[T], value: Set[T]): T5Transformer.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  99. def set[T](feature: ArrayFeature[T], value: Array[T]): T5Transformer.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  100. final def set(paramPair: ParamPair[_]): T5Transformer.this.type
    Attributes
    protected
    Definition Classes
    Params
  101. final def set(param: String, value: Any): T5Transformer.this.type
    Attributes
    protected
    Definition Classes
    Params
  102. final def set[T](param: Param[T], value: T): T5Transformer.this.type
    Definition Classes
    Params
  103. def setConfigProtoBytes(bytes: Array[Int]): T5Transformer.this.type

  104. def setDefault[T](feature: StructFeature[T], value: () ⇒ T): T5Transformer.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  105. def setDefault[K, V](feature: MapFeature[K, V], value: () ⇒ Map[K, V]): T5Transformer.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  106. def setDefault[T](feature: SetFeature[T], value: () ⇒ Set[T]): T5Transformer.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  107. def setDefault[T](feature: ArrayFeature[T], value: () ⇒ Array[T]): T5Transformer.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  108. final def setDefault(paramPairs: ParamPair[_]*): T5Transformer.this.type
    Attributes
    protected
    Definition Classes
    Params
  109. final def setDefault[T](param: Param[T], value: T): T5Transformer.this.type
    Attributes
    protected
    Definition Classes
    Params
  110. def setDoSample(value: Boolean): T5Transformer.this.type

  111. final def setInputCols(value: String*): T5Transformer.this.type
    Definition Classes
    HasInputAnnotationCols
  112. final def setInputCols(value: Array[String]): T5Transformer.this.type

    Overrides required annotators column if different than default

    Overrides required annotators column if different than default

    Definition Classes
    HasInputAnnotationCols
  113. def setLazyAnnotator(value: Boolean): T5Transformer.this.type
    Definition Classes
    CanBeLazy
  114. def setMaxOutputLength(value: Int): T5Transformer.this.type

  115. def setMinOutputLength(value: Int): T5Transformer.this.type

  116. def setModelIfNotSet(spark: SparkSession, tfWrapper: TensorflowWrapper, spp: SentencePieceWrapper): T5Transformer.this.type

  117. def setNoRepeatNgramSize(value: Int): T5Transformer.this.type

  118. final def setOutputCol(value: String): T5Transformer.this.type

    Overrides annotation column name when transforming

    Overrides annotation column name when transforming

    Definition Classes
    HasOutputAnnotationCol
  119. def setParent(parent: Estimator[T5Transformer]): T5Transformer
    Definition Classes
    Model
  120. def setRandomSeed(value: Long): T5Transformer.this.type

  121. def setRepetitionPenalty(value: Double): T5Transformer.this.type

  122. def setTask(value: String): T5Transformer.this.type

  123. def setTemperature(value: Double): T5Transformer.this.type

  124. def setTopK(value: Int): T5Transformer.this.type

  125. def setTopP(value: Double): T5Transformer.this.type

  126. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  127. val task: Param[String]

    Set transformer task, e.g.

    Set transformer task, e.g. 'summarize'

  128. val temperature: DoubleParam

    The value used to module the next token probabilities

  129. def toString(): String
    Definition Classes
    Identifiable → AnyRef → Any
  130. val topK: IntParam

    The number of highest probability vocabulary tokens to keep for top-k-filtering

  131. val topP: DoubleParam

    If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation

  132. final def transform(dataset: Dataset[_]): DataFrame

    Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content

    Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content

    dataset

    Dataset[Row]

    Definition Classes
    AnnotatorModel → Transformer
  133. def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" )
  134. def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" ) @varargs()
  135. final def transformSchema(schema: StructType): StructType

    requirement for pipeline transformation validation.

    requirement for pipeline transformation validation. It is called on fit()

    Definition Classes
    RawAnnotator → PipelineStage
  136. def transformSchema(schema: StructType, logging: Boolean): StructType
    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  137. val uid: String
    Definition Classes
    T5Transformer → Identifiable
  138. def validate(schema: StructType): Boolean

    takes a Dataset and checks to see if all the required annotation types are present.

    takes a Dataset and checks to see if all the required annotation types are present.

    schema

    to be validated

    returns

    True if all the required types are present, else false

    Attributes
    protected
    Definition Classes
    RawAnnotator
  139. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  140. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  141. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  142. def wrapColumnMetadata(col: Column): Column
    Attributes
    protected
    Definition Classes
    RawAnnotator
  143. def write: MLWriter
    Definition Classes
    ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
  144. def writeSentencePieceModel(path: String, spark: SparkSession, spp: SentencePieceWrapper, suffix: String, filename: String): Unit
    Definition Classes
    WriteSentencePieceModel
  145. def writeTensorflowHub(path: String, tfPath: String, spark: SparkSession, suffix: String = "_use"): Unit
    Definition Classes
    WriteTensorflowModel
  146. def writeTensorflowModel(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None): Unit
    Definition Classes
    WriteTensorflowModel
  147. def writeTensorflowModelV2(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None): Unit
    Definition Classes
    WriteTensorflowModel

Inherited from WriteSentencePieceModel

Inherited from WriteTensorflowModel

Inherited from AnnotatorModel[T5Transformer]

Inherited from CanBeLazy

Inherited from RawAnnotator[T5Transformer]

Inherited from HasOutputAnnotationCol

Inherited from HasInputAnnotationCols

Inherited from HasOutputAnnotatorType

Inherited from ParamsAndFeaturesWritable

Inherited from HasFeatures

Inherited from DefaultParamsWritable

Inherited from MLWritable

Inherited from Model[T5Transformer]

Inherited from Transformer

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

getParam

getParam *

param

setParam

setParam *

Ungrouped