package dl
- Alphabetic
- Public
- All
Type Members
-
class
AlbertForTokenClassification extends AnnotatorModel[AlbertForTokenClassification] with HasBatchedAnnotate[AlbertForTokenClassification] with WriteTensorflowModel with WriteSentencePieceModel with HasCaseSensitiveProperties
AlbertForTokenClassification can load ALBERT Models with a token classification head on top (a linear layer on top of the hidden-states output) e.g.
AlbertForTokenClassification can load ALBERT Models with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.
Pretrained models can be loaded with
pretrained
of the companion object:val tokenClassifier = AlbertForTokenClassification.pretrained() .setInputCols("token", "document") .setOutputCol("label")
The default model is
"albert_base_token_classifier_conll03"
, if no name is provided.For available pretrained models please see the Models Hub.
and the AlbertForTokenClassificationTestSpec. Models from the HuggingFace 🤗 Transformers library are also compatible with Spark NLP 🚀. The Spark NLP Workshop example shows how to import them https://github.com/JohnSnowLabs/spark-nlp/discussions/5669.
Example
import spark.implicits._ import com.johnsnowlabs.nlp.base._ import com.johnsnowlabs.nlp.annotator._ import org.apache.spark.ml.Pipeline val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val tokenizer = new Tokenizer() .setInputCols("document") .setOutputCol("token") val tokenClassifier = AlbertForTokenClassification.pretrained() .setInputCols("token", "document") .setOutputCol("label") .setCaseSensitive(true) val pipeline = new Pipeline().setStages(Array( documentAssembler, tokenizer, tokenClassifier )) val data = Seq("John Lenon was born in London and lived in Paris. My name is Sarah and I live in London").toDF("text") val result = pipeline.fit(data).transform(data) result.select("label.result").show(false) +------------------------------------------------------------------------------------+ |result | +------------------------------------------------------------------------------------+ |[B-PER, I-PER, O, O, O, B-LOC, O, O, O, B-LOC, O, O, O, O, B-PER, O, O, O, O, B-LOC]| +------------------------------------------------------------------------------------+
- See also
AlbertForTokenClassification for sentence-level embeddings
Annotators Main Page for a list of transformer based classifiers
-
class
BertForTokenClassification extends AnnotatorModel[BertForTokenClassification] with HasBatchedAnnotate[BertForTokenClassification] with WriteTensorflowModel with HasCaseSensitiveProperties
BertForTokenClassification can load Bert Models with a token classification head on top (a linear layer on top of the hidden-states output) e.g.
BertForTokenClassification can load Bert Models with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.
Pretrained models can be loaded with
pretrained
of the companion object:val tokenClassifier = BertForTokenClassification.pretrained() .setInputCols("token", "document") .setOutputCol("label")
The default model is
"bert_base_token_classifier_conll03"
, if no name is provided.For available pretrained models please see the Models Hub.
Models from the HuggingFace 🤗 Transformers library are also compatible with Spark NLP 🚀. The Spark NLP Workshop example shows how to import them https://github.com/JohnSnowLabs/spark-nlp/discussions/5669. and the BertForTokenClassificationTestSpec.
Example
import spark.implicits._ import com.johnsnowlabs.nlp.base._ import com.johnsnowlabs.nlp.annotator._ import org.apache.spark.ml.Pipeline val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val tokenizer = new Tokenizer() .setInputCols("document") .setOutputCol("token") val tokenClassifier = BertForTokenClassification.pretrained() .setInputCols("token", "document") .setOutputCol("label") .setCaseSensitive(true) val pipeline = new Pipeline().setStages(Array( documentAssembler, tokenizer, tokenClassifier )) val data = Seq("John Lenon was born in London and lived in Paris. My name is Sarah and I live in London").toDF("text") val result = pipeline.fit(data).transform(data) result.select("label.result").show(false) +------------------------------------------------------------------------------------+ |result | +------------------------------------------------------------------------------------+ |[B-PER, I-PER, O, O, O, B-LOC, O, O, O, B-LOC, O, O, O, O, B-PER, O, O, O, O, B-LOC]| +------------------------------------------------------------------------------------+
- See also
BertForTokenClassification for sentence-level embeddings
Annotators Main Page for a list of transformer based classifiers
-
class
ClassifierDLApproach extends AnnotatorApproach[ClassifierDLModel] with ParamsAndFeaturesWritable
Trains a ClassifierDL for generic Multi-class Text Classification.
Trains a ClassifierDL for generic Multi-class Text Classification.
ClassifierDL uses the state-of-the-art Universal Sentence Encoder as an input for text classifications. The ClassifierDL annotator uses a deep learning model (DNNs) we have built inside TensorFlow and supports up to 100 classes.
For instantiated/pretrained models, see ClassifierDLModel.
Notes:
- This annotator accepts a label column of a single item in either type of String, Int, Float, or Double.
- UniversalSentenceEncoder,
BertSentenceEmbeddings, or
SentenceEmbeddings can be used for the
inputCol
.
For extended examples of usage, see the Spark NLP Workshop [1] [2] and the ClassifierDLTestSpec.
Example
In this example, the training data
"sentiment.csv"
has the form oftext,label This movie is the best movie I have wached ever! In my opinion this movie can win an award.,0 This was a terrible movie! The acting was bad really bad!,1 ...
Then traning can be done like so:
import com.johnsnowlabs.nlp.base.DocumentAssembler import com.johnsnowlabs.nlp.embeddings.UniversalSentenceEncoder import com.johnsnowlabs.nlp.annotators.classifier.dl.ClassifierDLApproach import org.apache.spark.ml.Pipeline val smallCorpus = spark.read.option("header","true").csv("src/test/resources/classifier/sentiment.csv") val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val useEmbeddings = UniversalSentenceEncoder.pretrained() .setInputCols("document") .setOutputCol("sentence_embeddings") val docClassifier = new ClassifierDLApproach() .setInputCols("sentence_embeddings") .setOutputCol("category") .setLabelColumn("label") .setBatchSize(64) .setMaxEpochs(20) .setLr(5e-3f) .setDropout(0.5f) val pipeline = new Pipeline() .setStages( Array( documentAssembler, useEmbeddings, docClassifier ) ) val pipelineModel = pipeline.fit(smallCorpus)
- See also
MultiClassifierDLApproach for multi-class classification
SentimentDLApproach for sentiment analysis
-
class
ClassifierDLModel extends AnnotatorModel[ClassifierDLModel] with HasSimpleAnnotate[ClassifierDLModel] with WriteTensorflowModel with HasStorageRef with ParamsAndFeaturesWritable
ClassifierDL for generic Multi-class Text Classification.
ClassifierDL for generic Multi-class Text Classification.
ClassifierDL uses the state-of-the-art Universal Sentence Encoder as an input for text classifications. The ClassifierDL annotator uses a deep learning model (DNNs) we have built inside TensorFlow and supports up to 100 classes.
This is the instantiated model of the ClassifierDLApproach. For training your own model, please see the documentation of that class.
Pretrained models can be loaded with
pretrained
of the companion object:val classifierDL = ClassifierDLModel.pretrained() .setInputCols("sentence_embeddings") .setOutputCol("classification")
The default model is
"classifierdl_use_trec6"
, if no name is provided. It uses embeddings from the UniversalSentenceEncoder and is trained on the TREC-6 dataset. For available pretrained models please see the Models Hub.For extended examples of usage, see the Spark NLP Workshop and the ClassifierDLTestSpec.
Example
import spark.implicits._ import com.johnsnowlabs.nlp.base.DocumentAssembler import com.johnsnowlabs.nlp.annotator.SentenceDetector import com.johnsnowlabs.nlp.annotators.classifier.dl.ClassifierDLModel import com.johnsnowlabs.nlp.embeddings.UniversalSentenceEncoder import org.apache.spark.ml.Pipeline val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val sentence = new SentenceDetector() .setInputCols("document") .setOutputCol("sentence") val useEmbeddings = UniversalSentenceEncoder.pretrained() .setInputCols("document") .setOutputCol("sentence_embeddings") val sarcasmDL = ClassifierDLModel.pretrained("classifierdl_use_sarcasm") .setInputCols("sentence_embeddings") .setOutputCol("sarcasm") val pipeline = new Pipeline() .setStages(Array( documentAssembler, sentence, useEmbeddings, sarcasmDL )) val data = Seq( "I'm ready!", "If I could put into words how much I love waking up at 6 am on Mondays I would." ).toDF("text") val result = pipeline.fit(data).transform(data) result.selectExpr("explode(arrays_zip(sentence, sarcasm)) as out") .selectExpr("out.sentence.result as sentence", "out.sarcasm.result as sarcasm") .show(false) +-------------------------------------------------------------------------------+-------+ |sentence |sarcasm| +-------------------------------------------------------------------------------+-------+ |I'm ready! |normal | |If I could put into words how much I love waking up at 6 am on Mondays I would.|sarcasm| +-------------------------------------------------------------------------------+-------+
- See also
MultiClassifierDLModel for multi-class classification
SentimentDLModel for sentiment analysis
-
class
DistilBertForTokenClassification extends AnnotatorModel[DistilBertForTokenClassification] with HasBatchedAnnotate[DistilBertForTokenClassification] with WriteTensorflowModel with HasCaseSensitiveProperties
DistilBertForTokenClassification can load Bert Models with a token classification head on top (a linear layer on top of the hidden-states output) e.g.
DistilBertForTokenClassification can load Bert Models with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.
Pretrained models can be loaded with
pretrained
of the companion object:val tokenClassifier = DistilBertForTokenClassification.pretrained() .setInputCols("token", "document") .setOutputCol("label")
The default model is
"distilbert_base_token_classifier_conll03"
, if no name is provided.For available pretrained models please see the Models Hub.
Models from the HuggingFace 🤗 Transformers library are also compatible with Spark NLP 🚀. The Spark NLP Workshop example shows how to import them https://github.com/JohnSnowLabs/spark-nlp/discussions/5669. and the DistilBertForTokenClassificationTestSpec.
Example
import spark.implicits._ import com.johnsnowlabs.nlp.base._ import com.johnsnowlabs.nlp.annotator._ import org.apache.spark.ml.Pipeline val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val tokenizer = new Tokenizer() .setInputCols("document") .setOutputCol("token") val tokenClassifier = DistilBertForTokenClassification.pretrained() .setInputCols("token", "document") .setOutputCol("label") .setCaseSensitive(true) val pipeline = new Pipeline().setStages(Array( documentAssembler, tokenizer, tokenClassifier )) val data = Seq("John Lenon was born in London and lived in Paris. My name is Sarah and I live in London").toDF("text") val result = pipeline.fit(data).transform(data) result.select("label.result").show(false) +------------------------------------------------------------------------------------+ |result | +------------------------------------------------------------------------------------+ |[B-PER, I-PER, O, O, O, B-LOC, O, O, O, B-LOC, O, O, O, O, B-PER, O, O, O, O, B-LOC]| +------------------------------------------------------------------------------------+
- See also
DistilBertForTokenClassification for sentence-level embeddings
Annotators Main Page for a list of transformer based classifiers
-
class
LongformerForTokenClassification extends AnnotatorModel[LongformerForTokenClassification] with HasBatchedAnnotate[LongformerForTokenClassification] with WriteTensorflowModel with HasCaseSensitiveProperties
LongformerForTokenClassification can load Longformer Models with a token classification head on top (a linear layer on top of the hidden-states output) e.g.
LongformerForTokenClassification can load Longformer Models with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.
Pretrained models can be loaded with
pretrained
of the companion object:val tokenClassifier = LongformerForTokenClassification.pretrained() .setInputCols("token", "document") .setOutputCol("label")
The default model is
"longformer_base_token_classifier_conll03"
, if no name is provided.For available pretrained models please see the Models Hub.
and the LongformerForTokenClassificationTestSpec. Models from the HuggingFace 🤗 Transformers library are also compatible with Spark NLP 🚀. The Spark NLP Workshop example shows how to import them https://github.com/JohnSnowLabs/spark-nlp/discussions/5669.
Example
import spark.implicits._ import com.johnsnowlabs.nlp.base._ import com.johnsnowlabs.nlp.annotator._ import org.apache.spark.ml.Pipeline val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val tokenizer = new Tokenizer() .setInputCols("document") .setOutputCol("token") val tokenClassifier = LongformerForTokenClassification.pretrained() .setInputCols("token", "document") .setOutputCol("label") .setCaseSensitive(true) val pipeline = new Pipeline().setStages(Array( documentAssembler, tokenizer, tokenClassifier )) val data = Seq("John Lenon was born in London and lived in Paris. My name is Sarah and I live in London").toDF("text") val result = pipeline.fit(data).transform(data) result.select("label.result").show(false) +------------------------------------------------------------------------------------+ |result | +------------------------------------------------------------------------------------+ |[B-PER, I-PER, O, O, O, B-LOC, O, O, O, B-LOC, O, O, O, O, B-PER, O, O, O, O, B-LOC]| +------------------------------------------------------------------------------------+
- See also
LongformerForTokenClassification for sentence-level embeddings
Annotators Main Page for a list of transformer based classifiers
-
class
MultiClassifierDLApproach extends AnnotatorApproach[MultiClassifierDLModel] with ParamsAndFeaturesWritable
Trains a MultiClassifierDL for Multi-label Text Classification.
Trains a MultiClassifierDL for Multi-label Text Classification.
MultiClassifierDL uses a Bidirectional GRU with a convolutional model that we have built inside TensorFlow and supports up to 100 classes.
For instantiated/pretrained models, see MultiClassifierDLModel.
The input to
MultiClassifierDL
are Sentence Embeddings such as the state-of-the-art UniversalSentenceEncoder, BertSentenceEmbeddings, or SentenceEmbeddings.In machine learning, multi-label classification and the strongly related problem of multi-output classification are variants of the classification problem where multiple labels may be assigned to each instance. Multi-label classification is a generalization of multiclass classification, which is the single-label problem of categorizing instances into precisely one of more than two classes; in the multi-label problem there is no constraint on how many of the classes the instance can be assigned to. Formally, multi-label classification is the problem of finding a model that maps inputs x to binary vectors y (assigning a value of 0 or 1 for each element (label) in y).
Notes:
- This annotator requires an array of labels in type of String.
- UniversalSentenceEncoder,
BertSentenceEmbeddings, or
SentenceEmbeddings can be used for the
inputCol
.
For extended examples of usage, see the Spark NLP Workshop and the MultiClassifierDLTestSpec.
Example
In this example, the training data has the form (Note: labels can be arbitrary)
mr,ref "name[Alimentum], area[city centre], familyFriendly[no], near[Burger King]",Alimentum is an adult establish found in the city centre area near Burger King. "name[Alimentum], area[city centre], familyFriendly[yes]",Alimentum is a family-friendly place in the city centre. ...
It needs some pre-processing first, so the labels are of type
Array[String]
. This can be done like so:import spark.implicits._ import com.johnsnowlabs.nlp.annotators.classifier.dl.MultiClassifierDLApproach import com.johnsnowlabs.nlp.base.DocumentAssembler import com.johnsnowlabs.nlp.embeddings.UniversalSentenceEncoder import org.apache.spark.ml.Pipeline import org.apache.spark.sql.functions.{col, udf} // Process training data to create text with associated array of labels def splitAndTrim = udf { labels: String => labels.split(", ").map(x=>x.trim) } val smallCorpus = spark.read .option("header", true) .option("inferSchema", true) .option("mode", "DROPMALFORMED") .csv("src/test/resources/classifier/e2e.csv") .withColumn("labels", splitAndTrim(col("mr"))) .withColumn("text", col("ref")) .drop("mr") smallCorpus.printSchema() // root // |-- ref: string (nullable = true) // |-- labels: array (nullable = true) // | |-- element: string (containsNull = true) // Then create pipeline for training val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") .setCleanupMode("shrink") val embeddings = UniversalSentenceEncoder.pretrained() .setInputCols("document") .setOutputCol("embeddings") val docClassifier = new MultiClassifierDLApproach() .setInputCols("embeddings") .setOutputCol("category") .setLabelColumn("labels") .setBatchSize(128) .setMaxEpochs(10) .setLr(1e-3f) .setThreshold(0.5f) .setValidationSplit(0.1f) val pipeline = new Pipeline() .setStages( Array( documentAssembler, embeddings, docClassifier ) ) val pipelineModel = pipeline.fit(smallCorpus)
- See also
ClassifierDLApproach for single-class classification
SentimentDLApproach for sentiment analysis
-
class
MultiClassifierDLModel extends AnnotatorModel[MultiClassifierDLModel] with HasSimpleAnnotate[MultiClassifierDLModel] with WriteTensorflowModel with HasStorageRef with ParamsAndFeaturesWritable
MultiClassifierDL for Multi-label Text Classification.
MultiClassifierDL for Multi-label Text Classification.
MultiClassifierDL Bidirectional GRU with Convolution model we have built inside TensorFlow and supports up to 100 classes. The input to MultiClassifierDL is Sentence Embeddings such as state-of-the-art UniversalSentenceEncoder, BertSentenceEmbeddings, or SentenceEmbeddings.
This is the instantiated model of the MultiClassifierDLApproach. For training your own model, please see the documentation of that class.
Pretrained models can be loaded with
pretrained
of the companion object:val multiClassifier = MultiClassifierDLModel.pretrained() .setInputCols("sentence_embeddings") .setOutputCol("categories")
The default model is
"multiclassifierdl_use_toxic"
, if no name is provided. It uses embeddings from the UniversalSentenceEncoder and classifies toxic comments. The data is based on the Jigsaw Toxic Comment Classification Challenge. For available pretrained models please see the Models Hub.In machine learning, multi-label classification and the strongly related problem of multi-output classification are variants of the classification problem where multiple labels may be assigned to each instance. Multi-label classification is a generalization of multiclass classification, which is the single-label problem of categorizing instances into precisely one of more than two classes; in the multi-label problem there is no constraint on how many of the classes the instance can be assigned to. Formally, multi-label classification is the problem of finding a model that maps inputs x to binary vectors y (assigning a value of 0 or 1 for each element (label) in y).
For extended examples of usage, see the Spark NLP Workshop and the MultiClassifierDLTestSpec.
Example
import spark.implicits._ import com.johnsnowlabs.nlp.base.DocumentAssembler import com.johnsnowlabs.nlp.annotators.classifier.dl.MultiClassifierDLModel import com.johnsnowlabs.nlp.embeddings.UniversalSentenceEncoder import org.apache.spark.ml.Pipeline val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val useEmbeddings = UniversalSentenceEncoder.pretrained() .setInputCols("document") .setOutputCol("sentence_embeddings") val multiClassifierDl = MultiClassifierDLModel.pretrained() .setInputCols("sentence_embeddings") .setOutputCol("classifications") val pipeline = new Pipeline() .setStages(Array( documentAssembler, useEmbeddings, multiClassifierDl )) val data = Seq( "This is pretty good stuff!", "Wtf kind of crap is this" ).toDF("text") val result = pipeline.fit(data).transform(data) result.select("text", "classifications.result").show(false) +--------------------------+----------------+ |text |result | +--------------------------+----------------+ |This is pretty good stuff!|[] | |Wtf kind of crap is this |[toxic, obscene]| +--------------------------+----------------+
- See also
ClassifierDLModel for single-class classification
SentimentDLModel for sentiment analysis
- trait ReadAlbertForTokenTensorflowModel extends ReadTensorflowModel with ReadSentencePieceModel
- trait ReadBertForTokenTensorflowModel extends ReadTensorflowModel
- trait ReadClassifierDLTensorflowModel extends ReadTensorflowModel
- trait ReadDistilBertForTokenTensorflowModel extends ReadTensorflowModel
- trait ReadLongformerForTokenTensorflowModel extends ReadTensorflowModel
- trait ReadMultiClassifierDLTensorflowModel extends ReadTensorflowModel
- trait ReadRoBertaForTokenTensorflowModel extends ReadTensorflowModel
- trait ReadSentimentDLTensorflowModel extends ReadTensorflowModel
- trait ReadXlmRoBertaForTokenTensorflowModel extends ReadTensorflowModel with ReadSentencePieceModel
- trait ReadXlnetForTokenTensorflowModel extends ReadTensorflowModel with ReadSentencePieceModel
- trait ReadablePretrainedAlbertForTokenModel extends ParamsAndFeaturesReadable[AlbertForTokenClassification] with HasPretrained[AlbertForTokenClassification]
- trait ReadablePretrainedBertForTokenModel extends ParamsAndFeaturesReadable[BertForTokenClassification] with HasPretrained[BertForTokenClassification]
- trait ReadablePretrainedClassifierDL extends ParamsAndFeaturesReadable[ClassifierDLModel] with HasPretrained[ClassifierDLModel]
- trait ReadablePretrainedDistilBertForTokenModel extends ParamsAndFeaturesReadable[DistilBertForTokenClassification] with HasPretrained[DistilBertForTokenClassification]
- trait ReadablePretrainedLongformerForTokenModel extends ParamsAndFeaturesReadable[LongformerForTokenClassification] with HasPretrained[LongformerForTokenClassification]
- trait ReadablePretrainedMultiClassifierDL extends ParamsAndFeaturesReadable[MultiClassifierDLModel] with HasPretrained[MultiClassifierDLModel]
- trait ReadablePretrainedRoBertaForTokenModel extends ParamsAndFeaturesReadable[RoBertaForTokenClassification] with HasPretrained[RoBertaForTokenClassification]
- trait ReadablePretrainedSentimentDL extends ParamsAndFeaturesReadable[SentimentDLModel] with HasPretrained[SentimentDLModel]
- trait ReadablePretrainedXlmRoBertaForTokenModel extends ParamsAndFeaturesReadable[XlmRoBertaForTokenClassification] with HasPretrained[XlmRoBertaForTokenClassification]
- trait ReadablePretrainedXlnetForTokenModel extends ParamsAndFeaturesReadable[XlnetForTokenClassification] with HasPretrained[XlnetForTokenClassification]
-
class
RoBertaForTokenClassification extends AnnotatorModel[RoBertaForTokenClassification] with HasBatchedAnnotate[RoBertaForTokenClassification] with WriteTensorflowModel with HasCaseSensitiveProperties
RoBertaForTokenClassification can load RoBERTa Models with a token classification head on top (a linear layer on top of the hidden-states output) e.g.
RoBertaForTokenClassification can load RoBERTa Models with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.
Pretrained models can be loaded with
pretrained
of the companion object:val tokenClassifier = RoBertaForTokenClassification.pretrained() .setInputCols("token", "document") .setOutputCol("label")
The default model is
"roberta_base_token_classifier_conll03"
, if no name is provided.For available pretrained models please see the Models Hub.
and the RoBertaForTokenClassificationTestSpec. Models from the HuggingFace 🤗 Transformers library are also compatible with Spark NLP 🚀. The Spark NLP Workshop example shows how to import them https://github.com/JohnSnowLabs/spark-nlp/discussions/5669.
Example
import spark.implicits._ import com.johnsnowlabs.nlp.base._ import com.johnsnowlabs.nlp.annotator._ import org.apache.spark.ml.Pipeline val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val tokenizer = new Tokenizer() .setInputCols("document") .setOutputCol("token") val tokenClassifier = RoBertaForTokenClassification.pretrained() .setInputCols("token", "document") .setOutputCol("label") .setCaseSensitive(true) val pipeline = new Pipeline().setStages(Array( documentAssembler, tokenizer, tokenClassifier )) val data = Seq("John Lenon was born in London and lived in Paris. My name is Sarah and I live in London").toDF("text") val result = pipeline.fit(data).transform(data) result.select("label.result").show(false) +------------------------------------------------------------------------------------+ |result | +------------------------------------------------------------------------------------+ |[B-PER, I-PER, O, O, O, B-LOC, O, O, O, B-LOC, O, O, O, O, B-PER, O, O, O, O, B-LOC]| +------------------------------------------------------------------------------------+
- See also
RoBertaForTokenClassification for sentence-level embeddings
Annotators Main Page for a list of transformer based classifiers
-
class
SentimentDLApproach extends AnnotatorApproach[SentimentDLModel] with ParamsAndFeaturesWritable
Trains a SentimentDL, an annotator for multi-class sentiment analysis.
Trains a SentimentDL, an annotator for multi-class sentiment analysis.
In natural language processing, sentiment analysis is the task of classifying the affective state or subjective view of a text. A common example is if either a product review or tweet can be interpreted positively or negatively.
For the instantiated/pretrained models, see SentimentDLModel.
Notes:
- This annotator accepts a label column of a single item in either type of String, Int, Float, or Double.
So positive sentiment can be expressed as either
"positive"
or0
, negative sentiment as"negative"
or1
. - UniversalSentenceEncoder,
BertSentenceEmbeddings, or
SentenceEmbeddings can be used for the
inputCol
.
For extended examples of usage, see the Spark NLP Workshop and the SentimentDLTestSpec.
Example
In this example,
sentiment.csv
is in the formtext,label This movie is the best movie I have watched ever! In my opinion this movie can win an award.,0 This was a terrible movie! The acting was bad really bad!,1
The model can then be trained with
import com.johnsnowlabs.nlp.base.DocumentAssembler import com.johnsnowlabs.nlp.annotator.UniversalSentenceEncoder import com.johnsnowlabs.nlp.annotators.classifier.dl.{SentimentDLApproach, SentimentDLModel} import org.apache.spark.ml.Pipeline val smallCorpus = spark.read.option("header", "true").csv("src/test/resources/classifier/sentiment.csv") val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val useEmbeddings = UniversalSentenceEncoder.pretrained() .setInputCols("document") .setOutputCol("sentence_embeddings") val docClassifier = new SentimentDLApproach() .setInputCols("sentence_embeddings") .setOutputCol("sentiment") .setLabelColumn("label") .setBatchSize(32) .setMaxEpochs(1) .setLr(5e-3f) .setDropout(0.5f) val pipeline = new Pipeline() .setStages( Array( documentAssembler, useEmbeddings, docClassifier ) ) val pipelineModel = pipeline.fit(smallCorpus)
- See also
ClassifierDLApproach for general single-class classification
MultiClassifierDLApproach for general multi-class classification
- This annotator accepts a label column of a single item in either type of String, Int, Float, or Double.
So positive sentiment can be expressed as either
-
class
SentimentDLModel extends AnnotatorModel[SentimentDLModel] with HasSimpleAnnotate[SentimentDLModel] with WriteTensorflowModel with HasStorageRef with ParamsAndFeaturesWritable
SentimentDL, an annotator for multi-class sentiment analysis.
SentimentDL, an annotator for multi-class sentiment analysis.
In natural language processing, sentiment analysis is the task of classifying the affective state or subjective view of a text. A common example is if either a product review or tweet can be interpreted positively or negatively.
This is the instantiated model of the SentimentDLApproach. For training your own model, please see the documentation of that class.
Pretrained models can be loaded with
pretrained
of the companion object:val sentiment = SentimentDLModel.pretrained() .setInputCols("sentence_embeddings") .setOutputCol("sentiment")
The default model is
"sentimentdl_use_imdb"
, if no name is provided. It is english sentiment analysis trained on the IMDB dataset. For available pretrained models please see the Models Hub.For extended examples of usage, see the Spark NLP Workshop and the SentimentDLTestSpec.
Example
import spark.implicits._ import com.johnsnowlabs.nlp.base.DocumentAssembler import com.johnsnowlabs.nlp.annotator.UniversalSentenceEncoder import com.johnsnowlabs.nlp.annotators.classifier.dl.SentimentDLModel import org.apache.spark.ml.Pipeline val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val useEmbeddings = UniversalSentenceEncoder.pretrained() .setInputCols("document") .setOutputCol("sentence_embeddings") val sentiment = SentimentDLModel.pretrained("sentimentdl_use_twitter") .setInputCols("sentence_embeddings") .setThreshold(0.7F) .setOutputCol("sentiment") val pipeline = new Pipeline().setStages(Array( documentAssembler, useEmbeddings, sentiment )) val data = Seq( "Wow, the new video is awesome!", "bruh what a damn waste of time" ).toDF("text") val result = pipeline.fit(data).transform(data) result.select("text", "sentiment.result").show(false) +------------------------------+----------+ |text |result | +------------------------------+----------+ |Wow, the new video is awesome!|[positive]| |bruh what a damn waste of time|[negative]| +------------------------------+----------+
- See also
ClassifierDLModel for general single-class classification
MultiClassifierDLModel for general multi-class classification
-
class
XlmRoBertaForTokenClassification extends AnnotatorModel[XlmRoBertaForTokenClassification] with HasBatchedAnnotate[XlmRoBertaForTokenClassification] with WriteTensorflowModel with WriteSentencePieceModel with HasCaseSensitiveProperties
XlmRoBertaForTokenClassification can load XLM-RoBERTa Models with a token classification head on top (a linear layer on top of the hidden-states output) e.g.
XlmRoBertaForTokenClassification can load XLM-RoBERTa Models with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.
Pretrained models can be loaded with
pretrained
of the companion object:val tokenClassifier = XlmRoBertaForTokenClassification.pretrained() .setInputCols("token", "document") .setOutputCol("label")
The default model is
"xlm_roberta_base_token_classifier_conll03"
, if no name is provided.For available pretrained models please see the Models Hub.
and the XlmRoBertaForTokenClassificationTestSpec. Models from the HuggingFace 🤗 Transformers library are also compatible with Spark NLP 🚀. The Spark NLP Workshop example shows how to import them https://github.com/JohnSnowLabs/spark-nlp/discussions/5669.
Example
import spark.implicits._ import com.johnsnowlabs.nlp.base._ import com.johnsnowlabs.nlp.annotator._ import org.apache.spark.ml.Pipeline val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val tokenizer = new Tokenizer() .setInputCols("document") .setOutputCol("token") val tokenClassifier = XlmRoBertaForTokenClassification.pretrained() .setInputCols("token", "document") .setOutputCol("label") .setCaseSensitive(true) val pipeline = new Pipeline().setStages(Array( documentAssembler, tokenizer, tokenClassifier )) val data = Seq("John Lenon was born in London and lived in Paris. My name is Sarah and I live in London").toDF("text") val result = pipeline.fit(data).transform(data) result.select("label.result").show(false) +------------------------------------------------------------------------------------+ |result | +------------------------------------------------------------------------------------+ |[B-PER, I-PER, O, O, O, B-LOC, O, O, O, B-LOC, O, O, O, O, B-PER, O, O, O, O, B-LOC]| +------------------------------------------------------------------------------------+
- See also
XlmRoBertaForTokenClassification for sentence-level embeddings
Annotators Main Page for a list of transformer based classifiers
-
class
XlnetForTokenClassification extends AnnotatorModel[XlnetForTokenClassification] with HasBatchedAnnotate[XlnetForTokenClassification] with WriteTensorflowModel with WriteSentencePieceModel with HasCaseSensitiveProperties
XlnetForTokenClassification can load XLNet Models with a token classification head on top (a linear layer on top of the hidden-states output) e.g.
XlnetForTokenClassification can load XLNet Models with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.
Pretrained models can be loaded with
pretrained
of the companion object:val tokenClassifier = XlnetForTokenClassification.pretrained() .setInputCols("token", "document") .setOutputCol("label")
The default model is
"xlnet_base_token_classifier_conll03"
, if no name is provided.For available pretrained models please see the Models Hub.
and the XlnetForTokenClassificationTestSpec. Models from the HuggingFace 🤗 Transformers library are also compatible with Spark NLP 🚀. The Spark NLP Workshop example shows how to import them https://github.com/JohnSnowLabs/spark-nlp/discussions/5669.
Example
import spark.implicits._ import com.johnsnowlabs.nlp.base._ import com.johnsnowlabs.nlp.annotator._ import org.apache.spark.ml.Pipeline val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val tokenizer = new Tokenizer() .setInputCols("document") .setOutputCol("token") val tokenClassifier = XlnetForTokenClassification.pretrained() .setInputCols("token", "document") .setOutputCol("label") .setCaseSensitive(true) val pipeline = new Pipeline().setStages(Array( documentAssembler, tokenizer, tokenClassifier )) val data = Seq("John Lenon was born in London and lived in Paris. My name is Sarah and I live in London").toDF("text") val result = pipeline.fit(data).transform(data) result.select("label.result").show(false) +------------------------------------------------------------------------------------+ |result | +------------------------------------------------------------------------------------+ |[B-PER, I-PER, O, O, O, B-LOC, O, O, O, B-LOC, O, O, O, O, B-PER, O, O, O, O, B-LOC]| +------------------------------------------------------------------------------------+
- See also
XlnetForTokenClassification for sentence-level embeddings
Annotators Main Page for a list of transformer based classifiers
Value Members
-
object
AlbertForTokenClassification extends ReadablePretrainedAlbertForTokenModel with ReadAlbertForTokenTensorflowModel with Serializable
This is the companion object of AlbertForTokenClassification.
This is the companion object of AlbertForTokenClassification. Please refer to that class for the documentation.
-
object
BertForTokenClassification extends ReadablePretrainedBertForTokenModel with ReadBertForTokenTensorflowModel with Serializable
This is the companion object of BertForTokenClassification.
This is the companion object of BertForTokenClassification. Please refer to that class for the documentation.
-
object
ClassifierDLApproach extends DefaultParamsReadable[ClassifierDLApproach] with Serializable
This is the companion object of ClassifierDLApproach.
This is the companion object of ClassifierDLApproach. Please refer to that class for the documentation.
-
object
ClassifierDLModel extends ReadablePretrainedClassifierDL with ReadClassifierDLTensorflowModel with Serializable
This is the companion object of ClassifierDLModel.
This is the companion object of ClassifierDLModel. Please refer to that class for the documentation.
-
object
DistilBertForTokenClassification extends ReadablePretrainedDistilBertForTokenModel with ReadDistilBertForTokenTensorflowModel with Serializable
This is the companion object of DistilBertForTokenClassification.
This is the companion object of DistilBertForTokenClassification. Please refer to that class for the documentation.
-
object
LongformerForTokenClassification extends ReadablePretrainedLongformerForTokenModel with ReadLongformerForTokenTensorflowModel with Serializable
This is the companion object of LongformerForTokenClassification.
This is the companion object of LongformerForTokenClassification. Please refer to that class for the documentation.
-
object
MultiClassifierDLModel extends ReadablePretrainedMultiClassifierDL with ReadMultiClassifierDLTensorflowModel with Serializable
This is the companion object of MultiClassifierDLModel.
This is the companion object of MultiClassifierDLModel. Please refer to that class for the documentation.
-
object
RoBertaForTokenClassification extends ReadablePretrainedRoBertaForTokenModel with ReadRoBertaForTokenTensorflowModel with Serializable
This is the companion object of RoBertaForTokenClassification.
This is the companion object of RoBertaForTokenClassification. Please refer to that class for the documentation.
-
object
SentimentApproach extends DefaultParamsReadable[SentimentDLApproach]
This is the companion object of SentimentApproach.
This is the companion object of SentimentApproach. Please refer to that class for the documentation.
-
object
SentimentDLModel extends ReadablePretrainedSentimentDL with ReadSentimentDLTensorflowModel with Serializable
This is the companion object of SentimentDLModel.
This is the companion object of SentimentDLModel. Please refer to that class for the documentation.
-
object
XlmRoBertaForTokenClassification extends ReadablePretrainedXlmRoBertaForTokenModel with ReadXlmRoBertaForTokenTensorflowModel with Serializable
This is the companion object of XlmRoBertaForTokenClassification.
This is the companion object of XlmRoBertaForTokenClassification. Please refer to that class for the documentation.
-
object
XlnetForTokenClassification extends ReadablePretrainedXlnetForTokenModel with ReadXlnetForTokenTensorflowModel with Serializable
This is the companion object of XlnetForTokenClassification.
This is the companion object of XlnetForTokenClassification. Please refer to that class for the documentation.