class SentimentDLApproach extends AnnotatorApproach[SentimentDLModel] with ParamsAndFeaturesWritable
Trains a SentimentDL, an annotator for multi-class sentiment analysis.
In natural language processing, sentiment analysis is the task of classifying the affective state or subjective view of a text. A common example is if either a product review or tweet can be interpreted positively or negatively.
For the instantiated/pretrained models, see SentimentDLModel.
Notes:
- This annotator accepts a label column of a single item in either type of String, Int,
Float, or Double. So positive sentiment can be expressed as either
"positive"
or0
, negative sentiment as"negative"
or1
. - UniversalSentenceEncoder,
BertSentenceEmbeddings, or
SentenceEmbeddings can be used for
the
inputCol
.
For extended examples of usage, see the Spark NLP Workshop and the SentimentDLTestSpec.
Example
In this example, sentiment.csv
is in the form
text,label This movie is the best movie I have watched ever! In my opinion this movie can win an award.,0 This was a terrible movie! The acting was bad really bad!,1
The model can then be trained with
import com.johnsnowlabs.nlp.base.DocumentAssembler import com.johnsnowlabs.nlp.annotator.UniversalSentenceEncoder import com.johnsnowlabs.nlp.annotators.classifier.dl.{SentimentDLApproach, SentimentDLModel} import org.apache.spark.ml.Pipeline val smallCorpus = spark.read.option("header", "true").csv("src/test/resources/classifier/sentiment.csv") val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val useEmbeddings = UniversalSentenceEncoder.pretrained() .setInputCols("document") .setOutputCol("sentence_embeddings") val docClassifier = new SentimentDLApproach() .setInputCols("sentence_embeddings") .setOutputCol("sentiment") .setLabelColumn("label") .setBatchSize(32) .setMaxEpochs(1) .setLr(5e-3f) .setDropout(0.5f) val pipeline = new Pipeline() .setStages( Array( documentAssembler, useEmbeddings, docClassifier ) ) val pipelineModel = pipeline.fit(smallCorpus)
- See also
ClassifierDLApproach for general single-class classification
MultiClassifierDLApproach for general multi-class classification
- Grouped
- Alphabetic
- By Inheritance
- SentimentDLApproach
- ParamsAndFeaturesWritable
- HasFeatures
- AnnotatorApproach
- CanBeLazy
- DefaultParamsWritable
- MLWritable
- HasOutputAnnotatorType
- HasOutputAnnotationCol
- HasInputAnnotationCols
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
Type Members
-
type
AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
$[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
-
def
$$[T](feature: StructFeature[T]): T
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[K, V](feature: MapFeature[K, V]): Map[K, V]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[T](feature: SetFeature[T]): Set[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[T](feature: ArrayFeature[T]): Array[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
_fit(dataset: Dataset[_], recursiveStages: Option[PipelineModel]): SentimentDLModel
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
val
batchSize: IntParam
Batch size (Default:
64
) -
def
beforeTraining(spark: SparkSession): Unit
- Definition Classes
- SentimentDLApproach → AnnotatorApproach
-
final
def
checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
clear(param: Param[_]): SentimentDLApproach.this.type
- Definition Classes
- Params
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
val
configProtoBytes: IntArrayParam
ConfigProto from tensorflow, serialized into byte array.
ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()
-
final
def
copy(extra: ParamMap): Estimator[SentimentDLModel]
- Definition Classes
- AnnotatorApproach → Estimator → PipelineStage → Params
-
def
copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
final
def
defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
val
description: String
- Definition Classes
- SentimentDLApproach → AnnotatorApproach
-
val
dropout: FloatParam
Dropout coefficient (Default:
0.5f
) -
val
enableOutputLogs: BooleanParam
Whether to output to annotators log folder (Default:
false
) -
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
val
features: ArrayBuffer[Feature[_, _, _]]
- Definition Classes
- HasFeatures
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
fit(dataset: Dataset[_]): SentimentDLModel
- Definition Classes
- AnnotatorApproach → Estimator
-
def
fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[SentimentDLModel]
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], paramMap: ParamMap): SentimentDLModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): SentimentDLModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" ) @varargs()
-
def
get[T](feature: StructFeature[T]): Option[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[T](feature: SetFeature[T]): Option[Set[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[T](feature: ArrayFeature[T]): Option[Array[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getBatchSize: Int
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- def getConfigProtoBytes: Option[Array[Byte]]
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getDropout: Float
- def getEnableOutputLogs: Boolean
-
def
getInputCols: Array[String]
- returns
input annotations columns currently used
- Definition Classes
- HasInputAnnotationCols
- def getLabelColumn: String
-
def
getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
- def getLr: Float
- def getMaxEpochs: Int
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
final
def
getOutputCol: String
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
- HasOutputAnnotationCol
- def getOutputLogsPath: String
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
- def getThreshold: Float
- def getThresholdLabel: String
- def getValidationSplit: Float
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
def
initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
val
inputAnnotatorTypes: Array[AnnotatorType]
Input Annotator Types: SENTENCE_EMBEDDINGS
Input Annotator Types: SENTENCE_EMBEDDINGS
- Definition Classes
- SentimentDLApproach → HasInputAnnotationCols
-
final
val
inputCols: StringArrayParam
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
def
isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
val
labelColumn: Param[String]
Column with label per each document
-
val
lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
- def loadSavedModel(): TensorflowWrapper
-
def
log: Logger
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logName: String
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
val
lr: FloatParam
Learning Rate (Default:
5e-3f
) -
val
maxEpochs: IntParam
Maximum number of epochs to train (Default:
10
) -
def
msgHelper(schema: StructType): String
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
onTrained(model: SentimentDLModel, spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
-
def
onWrite(path: String, spark: SparkSession): Unit
- Attributes
- protected
- Definition Classes
- ParamsAndFeaturesWritable
-
val
optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
-
val
outputAnnotatorType: String
Output Annotator Types: CATEGORY
Output Annotator Types: CATEGORY
- Definition Classes
- SentimentDLApproach → HasOutputAnnotatorType
-
final
val
outputCol: Param[String]
- Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
-
val
outputLogsPath: Param[String]
Folder path to save training logs (Default:
""
) -
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
val
randomSeed: IntParam
Random seed for shuffling the dataset
-
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
def
set[T](feature: StructFeature[T], value: T): SentimentDLApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[K, V](feature: MapFeature[K, V], value: Map[K, V]): SentimentDLApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[T](feature: SetFeature[T], value: Set[T]): SentimentDLApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[T](feature: ArrayFeature[T], value: Array[T]): SentimentDLApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
set(paramPair: ParamPair[_]): SentimentDLApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set(param: String, value: Any): SentimentDLApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set[T](param: Param[T], value: T): SentimentDLApproach.this.type
- Definition Classes
- Params
- def setBatchSize(batch: Int): SentimentDLApproach.this.type
- def setConfigProtoBytes(bytes: Array[Int]): SentimentDLApproach.this.type
-
def
setDefault[T](feature: StructFeature[T], value: () ⇒ T): SentimentDLApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[K, V](feature: MapFeature[K, V], value: () ⇒ Map[K, V]): SentimentDLApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[T](feature: SetFeature[T], value: () ⇒ Set[T]): SentimentDLApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[T](feature: ArrayFeature[T], value: () ⇒ Array[T]): SentimentDLApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
setDefault(paramPairs: ParamPair[_]*): SentimentDLApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
setDefault[T](param: Param[T], value: T): SentimentDLApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
- def setDropout(dropout: Float): SentimentDLApproach.this.type
- def setEnableOutputLogs(enableOutputLogs: Boolean): SentimentDLApproach.this.type
-
final
def
setInputCols(value: String*): SentimentDLApproach.this.type
- Definition Classes
- HasInputAnnotationCols
-
def
setInputCols(value: Array[String]): SentimentDLApproach.this.type
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
- HasInputAnnotationCols
- def setLabelColumn(column: String): SentimentDLApproach.this.type
-
def
setLazyAnnotator(value: Boolean): SentimentDLApproach.this.type
- Definition Classes
- CanBeLazy
- def setLr(lr: Float): SentimentDLApproach.this.type
- def setMaxEpochs(epochs: Int): SentimentDLApproach.this.type
-
final
def
setOutputCol(value: String): SentimentDLApproach.this.type
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
- HasOutputAnnotationCol
- def setOutputLogsPath(path: String): SentimentDLApproach.this.type
-
def
setRandomSeed(seed: Int): SentimentDLApproach.this.type
Random seed
- def setThreshold(threshold: Float): SentimentDLApproach.this.type
- def setThresholdLabel(label: String): SentimentDLApproach.this.type
- def setValidationSplit(validationSplit: Float): SentimentDLApproach.this.type
- def setVerbose(verbose: Level): SentimentDLApproach.this.type
- def setVerbose(verbose: Int): SentimentDLApproach.this.type
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
val
threshold: FloatParam
The minimum threshold for the final result otherwise it will be either neutral or the value set in thresholdLabel (Default:
0.6f
) -
val
thresholdLabel: Param[String]
In case the score is less than threshold, what should be the label (Default:
"neutral"
) -
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
def
train(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): SentimentDLModel
- Definition Classes
- SentimentDLApproach → AnnotatorApproach
-
final
def
transformSchema(schema: StructType): StructType
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
- AnnotatorApproach → PipelineStage
-
def
transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
-
val
uid: String
- Definition Classes
- SentimentDLApproach → Identifiable
-
def
validate(schema: StructType): Boolean
takes a Dataset and checks to see if all the required annotation types are present.
takes a Dataset and checks to see if all the required annotation types are present.
- schema
to be validated
- returns
True if all the required types are present, else false
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
-
val
validationSplit: FloatParam
Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f
).Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f
). The value should be between 0.0 and 1.0 and by default it is 0.0 and off. -
val
verbose: IntParam
Level of verbosity during training (Default:
Verbose.Silent.id
) -
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
write: MLWriter
- Definition Classes
- ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
Inherited from ParamsAndFeaturesWritable
Inherited from HasFeatures
Inherited from AnnotatorApproach[SentimentDLModel]
Inherited from CanBeLazy
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from HasOutputAnnotatorType
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from Estimator[SentimentDLModel]
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.
Annotator types
Required input and expected output annotator types