trait ClassifierEncoder extends EvaluationDLParams
- Grouped
- Alphabetic
- By Inheritance
- ClassifierEncoder
- EvaluationDLParams
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Abstract Value Members
Concrete Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
$[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
val
batchSize: IntParam
Batch size (Default:
64
) -
def
buildDatasetWithLabels(dataset: Dataset[_], inputCols: String): (DataFrame, Array[String])
- Attributes
- protected
-
final
def
clear(param: Param[_]): ClassifierEncoder.this.type
- Definition Classes
- Params
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
val
configProtoBytes: IntArrayParam
ConfigProto from tensorflow, serialized into byte array.
ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()
-
def
copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
final
def
defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
val
enableOutputLogs: BooleanParam
Whether to output to annotators log folder (Default:
false
)Whether to output to annotators log folder (Default:
false
)- Definition Classes
- EvaluationDLParams
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
val
evaluationLogExtended: BooleanParam
Whether logs for validation to be extended (Default:
false
): it displays time and evaluation of each labelWhether logs for validation to be extended (Default:
false
): it displays time and evaluation of each label- Definition Classes
- EvaluationDLParams
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
def
extractInputs(encoder: ClassifierDatasetEncoder, dataframe: DataFrame): (Array[Array[Float]], Array[String])
- Attributes
- protected
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getBatchSize: Int
Batch size (Default:
64
) -
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
getConfigProtoBytes: Option[Array[Byte]]
Tensorflow config Protobytes passed to the TF session
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getEnableOutputLogs: Boolean
Whether to output to annotators log folder (Default:
false
)Whether to output to annotators log folder (Default:
false
)- Definition Classes
- EvaluationDLParams
-
def
getLabelColumn: String
Column with label per each document
-
def
getLr: Float
Learning Rate (Default:
5e-3f
) -
def
getMaxEpochs: Int
Maximum number of epochs to train (Default:
10
) -
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
def
getOutputLogsPath: String
Folder path to save training logs (Default:
""
)Folder path to save training logs (Default:
""
)- Definition Classes
- EvaluationDLParams
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
-
def
getRandomSeed: Int
Random seed
-
def
getValidationSplit: Float
Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f
).Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f
). The value should be between 0.0 and 1.0 and by default it is 0.0 and off.- Definition Classes
- EvaluationDLParams
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
val
labelColumn: Param[String]
Column with label per each document
-
val
lr: FloatParam
Learning Rate (Default:
5e-3f
) -
val
maxEpochs: IntParam
Maximum number of epochs to train (Default:
10
) -
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
val
outputLogsPath: Param[String]
Folder path to save training logs (Default:
""
)Folder path to save training logs (Default:
""
)- Definition Classes
- EvaluationDLParams
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
val
randomSeed: IntParam
Random seed for shuffling the dataset
-
final
def
set(paramPair: ParamPair[_]): ClassifierEncoder.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set(param: String, value: Any): ClassifierEncoder.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set[T](param: Param[T], value: T): ClassifierEncoder.this.type
- Definition Classes
- Params
-
def
setBatchSize(batch: Int): ClassifierEncoder.this.type
Batch size (Default:
64
) -
def
setConfigProtoBytes(bytes: Array[Int]): ClassifierEncoder.this.type
Tensorflow config Protobytes passed to the TF session
-
final
def
setDefault(paramPairs: ParamPair[_]*): ClassifierEncoder.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
setDefault[T](param: Param[T], value: T): ClassifierEncoder.this.type
- Attributes
- protected
- Definition Classes
- Params
-
def
setEnableOutputLogs(enableOutputLogs: Boolean): ClassifierEncoder.this.type
Whether to output to annotators log folder (Default:
false
)Whether to output to annotators log folder (Default:
false
)- Definition Classes
- EvaluationDLParams
-
def
setEvaluationLogExtended(evaluationLogExtended: Boolean): ClassifierEncoder.this.type
Whether logs for validation to be extended: it displays time and evaluation of each label.
Whether logs for validation to be extended: it displays time and evaluation of each label. Default is false.
- Definition Classes
- EvaluationDLParams
-
def
setLabelColumn(column: String): ClassifierEncoder.this.type
Column with label per each document
-
def
setLr(lr: Float): ClassifierEncoder.this.type
Learning Rate (Default:
5e-3f
) -
def
setMaxEpochs(epochs: Int): ClassifierEncoder.this.type
Maximum number of epochs to train (Default:
10
) -
def
setOutputLogsPath(path: String): ClassifierEncoder.this.type
Folder path to save training logs (Default:
""
)Folder path to save training logs (Default:
""
)- Definition Classes
- EvaluationDLParams
-
def
setRandomSeed(seed: Int): ClassifierEncoder.this.type
Random seed
-
def
setTestDataset(er: ExternalResource): ClassifierEncoder.this.type
Path to test dataset.
Path to test dataset. If set, it is used to calculate statistics on it during training.
- Definition Classes
- EvaluationDLParams
-
def
setTestDataset(path: String, readAs: Format = ReadAs.SPARK, options: Map[String, String] = Map("format" -> "parquet")): ClassifierEncoder.this.type
Path to test dataset.
Path to test dataset. If set, it is used to calculate statistics on it during training.
- Definition Classes
- EvaluationDLParams
-
def
setValidationSplit(validationSplit: Float): ClassifierEncoder.this.type
Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f
).Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f
). The value should be between 0.0 and 1.0 and by default it is 0.0 and off.- Definition Classes
- EvaluationDLParams
-
def
setVerbose(verbose: Level): ClassifierEncoder.this.type
Level of verbosity during training (Default:
Verbose.Silent.id
)Level of verbosity during training (Default:
Verbose.Silent.id
)- Definition Classes
- EvaluationDLParams
-
def
setVerbose(verbose: Int): ClassifierEncoder.this.type
Level of verbosity during training (Default:
Verbose.Silent.id
)Level of verbosity during training (Default:
Verbose.Silent.id
)- Definition Classes
- EvaluationDLParams
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
val
testDataset: ExternalResourceParam
Path to test dataset.
Path to test dataset. If set, it is used to calculate statistics on it during training.
- Definition Classes
- EvaluationDLParams
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
val
validationSplit: FloatParam
Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f
).Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f
). The value should be between 0.0 and 1.0 and by default it is 0.0 and off.- Definition Classes
- EvaluationDLParams
-
val
verbose: IntParam
Level of verbosity during training (Default:
Verbose.Silent.id
)Level of verbosity during training (Default:
Verbose.Silent.id
)- Definition Classes
- EvaluationDLParams
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()