class Lemmatizer extends AnnotatorApproach[LemmatizerModel]
Class to find lemmas out of words with the objective of returning a base dictionary word.
Retrieves the significant part of a word. A dictionary of predefined lemmas must be provided
with setDictionary. The dictionary can be set in either in the form of a delimited text file
or directly as an ExternalResource.
Pretrained models can be loaded with LemmatizerModel.pretrained.
For available pretrained models please see the Models Hub. For extended examples of usage, see the Examples and the LemmatizerTestSpec.
Example
In this example, the lemma dictionary lemmas_small.txt has the form of
... pick -> pick picks picking picked peck -> peck pecking pecked pecks pickle -> pickle pickles pickled pickling pepper -> pepper peppers peppered peppering ...
where each key is delimited by -> and values are delimited by \t
import spark.implicits._ import com.johnsnowlabs.nlp.DocumentAssembler import com.johnsnowlabs.nlp.annotator.Tokenizer import com.johnsnowlabs.nlp.annotator.SentenceDetector import com.johnsnowlabs.nlp.annotators.Lemmatizer import org.apache.spark.ml.Pipeline val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val sentenceDetector = new SentenceDetector() .setInputCols(Array("document")) .setOutputCol("sentence") val tokenizer = new Tokenizer() .setInputCols(Array("sentence")) .setOutputCol("token") val lemmatizer = new Lemmatizer() .setInputCols(Array("token")) .setOutputCol("lemma") .setDictionary("src/test/resources/lemma-corpus-small/lemmas_small.txt", "->", "\t") val pipeline = new Pipeline() .setStages(Array( documentAssembler, sentenceDetector, tokenizer, lemmatizer )) val data = Seq("Peter Pipers employees are picking pecks of pickled peppers.") .toDF("text") val result = pipeline.fit(data).transform(data) result.selectExpr("lemma.result").show(false) +------------------------------------------------------------------+ |result | +------------------------------------------------------------------+ |[Peter, Pipers, employees, are, pick, peck, of, pickle, pepper, .]| +------------------------------------------------------------------+
- See also
LemmatizerModel for the instantiated model and pretrained models.
- Grouped
- Alphabetic
- By Inheritance
- Lemmatizer
- AnnotatorApproach
- CanBeLazy
- DefaultParamsWritable
- MLWritable
- HasOutputAnnotatorType
- HasOutputAnnotationCol
- HasInputAnnotationCols
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
Type Members
- type AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def $[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def _fit(dataset: Dataset[_], recursiveStages: Option[PipelineModel]): LemmatizerModel
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
- def arraysZip: UserDefinedFunction
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def beforeTraining(spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
- final def checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def clear(param: Param[_]): Lemmatizer.this.type
- Definition Classes
- Params
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @HotSpotIntrinsicCandidate() @native()
- final def copy(extra: ParamMap): Estimator[LemmatizerModel]
- Definition Classes
- AnnotatorApproach → Estimator → PipelineStage → Params
- def copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
- final def defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
- val description: String
Retrieves the significant part of a word
Retrieves the significant part of a word
- Definition Classes
- Lemmatizer → AnnotatorApproach
- val dictionary: ExternalResourceParam
External dictionary to be used by the lemmatizer, which needs '
keyDelimiter' and 'valueDelimiter' for parsing the resourceExternal dictionary to be used by the lemmatizer, which needs '
keyDelimiter' and 'valueDelimiter' for parsing the resourceExample
... pick -> pick picks picking picked peck -> peck pecking pecked pecks pickle -> pickle pickles pickled pickling pepper -> pepper peppers peppered peppering ...
where each key is delimited by
->and values are delimited by\t - final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def explainParam(param: Param[_]): String
- Definition Classes
- Params
- def explainParams(): String
- Definition Classes
- Params
- final def extractParamMap(): ParamMap
- Definition Classes
- Params
- final def extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
- final def fit(dataset: Dataset[_]): LemmatizerModel
- Definition Classes
- AnnotatorApproach → Estimator
- def fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[LemmatizerModel]
- Definition Classes
- Estimator
- Annotations
- @Since("2.0.0")
- def fit(dataset: Dataset[_], paramMap: ParamMap): LemmatizerModel
- Definition Classes
- Estimator
- Annotations
- @Since("2.0.0")
- def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): LemmatizerModel
- Definition Classes
- Estimator
- Annotations
- @varargs() @Since("2.0.0")
- val formCol: Param[String]
Column that correspends to CoNLLU(formCol=) output
- final def get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- final def getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getDictionary: ExternalResource
External dictionary to be used by the lemmatizer
- def getFormCol: String
- def getInputCols: Array[String]
- returns
input annotations columns currently used
- Definition Classes
- HasInputAnnotationCols
- def getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
- def getLemmaCol: String
- final def getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
- final def getOutputCol: String
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
- HasOutputAnnotationCol
- def getParam(paramName: String): Param[Any]
- Definition Classes
- Params
- final def hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
- def hasParam(paramName: String): Boolean
- Definition Classes
- Params
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- def initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
- val inputAnnotatorTypes: Array[AnnotatorType]
Input annotator type : TOKEN
Input annotator type : TOKEN
- Definition Classes
- Lemmatizer → HasInputAnnotationCols
- final val inputCols: StringArrayParam
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- final def isSet(param: Param[_]): Boolean
- Definition Classes
- Params
- def isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- val lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
- val lemmaCol: Param[String]
Column that correspends to CoNLLU(lemmaCol=) output
- def log: Logger
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logName: String
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def msgHelper(schema: StructType): String
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- def onTrained(model: LemmatizerModel, spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
- val optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
- val outputAnnotatorType: AnnotatorType
Output annotator type : TOKEN
Output annotator type : TOKEN
- Definition Classes
- Lemmatizer → HasOutputAnnotatorType
- final val outputCol: Param[String]
- Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
- lazy val params: Array[Param[_]]
- Definition Classes
- Params
- def save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @throws("If the input path already exists but overwrite is not enabled.") @Since("1.6.0")
- final def set(paramPair: ParamPair[_]): Lemmatizer.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def set(param: String, value: Any): Lemmatizer.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def set[T](param: Param[T], value: T): Lemmatizer.this.type
- Definition Classes
- Params
- final def setDefault(paramPairs: ParamPair[_]*): Lemmatizer.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def setDefault[T](param: Param[T], value: T): Lemmatizer.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
- def setDictionary(path: String, keyDelimiter: String, valueDelimiter: String, readAs: Format = ReadAs.TEXT, options: Map[String, String] = Map("format" -> "text")): Lemmatizer.this.type
External dictionary to be used by the lemmatizer, which needs
keyDelimiterandvalueDelimiterfor parsing the resource - def setDictionary(value: ExternalResource): Lemmatizer.this.type
External dictionary already in the form of ExternalResource, for which the Map member
optionshas entries defined for"keyDelimiter"and"valueDelimiter".External dictionary already in the form of ExternalResource, for which the Map member
optionshas entries defined for"keyDelimiter"and"valueDelimiter".Example
val resource = ExternalResource( "src/test/resources/regex-matcher/rules.txt", ReadAs.TEXT, Map("keyDelimiter" -> "->", "valueDelimiter" -> "\t") ) val lemmatizer = new Lemmatizer() .setInputCols(Array("token")) .setOutputCol("lemma") .setDictionary(resource)
- def setFormCol(value: String): Lemmatizer.this.type
- final def setInputCols(value: String*): Lemmatizer.this.type
- Definition Classes
- HasInputAnnotationCols
- def setInputCols(value: Array[String]): Lemmatizer.this.type
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
- HasInputAnnotationCols
- def setLazyAnnotator(value: Boolean): Lemmatizer.this.type
- Definition Classes
- CanBeLazy
- def setLemmaCol(value: String): Lemmatizer.this.type
- final def setOutputCol(value: String): Lemmatizer.this.type
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
- HasOutputAnnotationCol
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
- def train(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): LemmatizerModel
- Definition Classes
- Lemmatizer → AnnotatorApproach
- final def transformSchema(schema: StructType): StructType
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
- AnnotatorApproach → PipelineStage
- def transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
- val uid: String
- Definition Classes
- Lemmatizer → Identifiable
- def validate(schema: StructType): Boolean
takes a Dataset and checks to see if all the required annotation types are present.
takes a Dataset and checks to see if all the required annotation types are present.
- schema
to be validated
- returns
True if all the required types are present, else false
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- def write: MLWriter
- Definition Classes
- DefaultParamsWritable → MLWritable
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
(Since version 9)
Inherited from AnnotatorApproach[LemmatizerModel]
Inherited from CanBeLazy
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from HasOutputAnnotatorType
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from Estimator[LemmatizerModel]
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Annotator types
Required input and expected output annotator types
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.