class WhisperForCTC extends AnnotatorModel[WhisperForCTC] with HasBatchedAnnotateAudio[WhisperForCTC] with HasAudioFeatureProperties with WriteTensorflowModel with WriteOpenvinoModel with WriteOnnxModel with HasEngine with HasGeneratorProperties with HasProtectedParams
Whisper Model with a language modeling head on top for Connectionist Temporal Classification (CTC).
Whisper is an automatic speech recognition (ASR) system trained on 680,000 hours of multilingual and multitask supervised data collected from the web. It transcribe in multiple languages, as well as translate from those languages into English.
The audio needs to be provided pre-processed an array of floats.
For multilingual models, the language and the task (transcribe or translate) can be set with
setLanguage and setTask.
Note that at the moment, this annotator only supports greedy search and only Spark Versions 3.4 and up are supported.
Pretrained models can be loaded with pretrained of the companion object:
val speechToText = WhisperForCTC.pretrained() .setInputCols("audio_assembler") .setOutputCol("text")
The default model is "asr_whisper_tiny_opt", if no name is provided.
For available pretrained models please see the Models Hub.
To see which models are compatible and how to import them see https://github.com/JohnSnowLabs/spark-nlp/discussions/5669 and to see more extended examples, see WhisperForCTCTestSpec.
References:
Robust Speech Recognition via Large-Scale Weak Supervision
Paper Abstract:
We study the capabilities of speech processing systems trained simply to predict large amounts of transcripts of audio on the internet. When scaled to 680,000 hours of multilingual and multitask supervision, the resulting models generalize well to standard benchmarks and are often competitive with prior fully supervised results but in a zero- shot transfer setting without the need for any fine- tuning. When compared to humans, the models approach their accuracy and robustness. We are releasing models and inference code to serve as a foundation for further work on robust speech processing.
Example
import spark.implicits._ import com.johnsnowlabs.nlp.base._ import com.johnsnowlabs.nlp.annotators._ import com.johnsnowlabs.nlp.annotators.audio.WhisperForCTC import org.apache.spark.ml.Pipeline val audioAssembler: AudioAssembler = new AudioAssembler() .setInputCol("audio_content") .setOutputCol("audio_assembler") val speechToText: WhisperForCTC = WhisperForCTC .pretrained() .setInputCols("audio_assembler") .setOutputCol("text") val pipeline: Pipeline = new Pipeline().setStages(Array(audioAssembler, speechToText)) val bufferedSource = scala.io.Source.fromFile("src/test/resources/audio/txt/librispeech_asr_0.txt") val rawFloats = bufferedSource .getLines() .map(_.split(",").head.trim.toFloat) .toArray bufferedSource.close val processedAudioFloats = Seq(rawFloats).toDF("audio_content") val result = pipeline.fit(processedAudioFloats).transform(processedAudioFloats) result.select("text.result").show(truncate = false) +------------------------------------------------------------------------------------------+ |result | +------------------------------------------------------------------------------------------+ |[ Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.]| +------------------------------------------------------------------------------------------+
- Grouped
- Alphabetic
- By Inheritance
- WhisperForCTC
- HasProtectedParams
- HasGeneratorProperties
- HasEngine
- WriteOnnxModel
- WriteOpenvinoModel
- WriteTensorflowModel
- HasAudioFeatureProperties
- HasBatchedAnnotateAudio
- AnnotatorModel
- CanBeLazy
- RawAnnotator
- HasOutputAnnotationCol
- HasInputAnnotationCols
- HasOutputAnnotatorType
- ParamsAndFeaturesWritable
- HasFeatures
- DefaultParamsWritable
- MLWritable
- Model
- Transformer
- PipelineStage
- Logging
- Params
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
Type Members
- implicit class ProtectedParam[T] extends Param[T]
- Definition Classes
- HasProtectedParams
- type AnnotationContent = Seq[Row]
internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI
internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI
- Attributes
- protected
- Definition Classes
- AnnotatorModel
- type AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def $[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
- def $$[T](feature: StructFeature[T]): T
- Attributes
- protected
- Definition Classes
- HasFeatures
- def $$[K, V](feature: MapFeature[K, V]): Map[K, V]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def $$[T](feature: SetFeature[T]): Set[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def $$[T](feature: ArrayFeature[T]): Array[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def _transform(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): DataFrame
- Attributes
- protected
- Definition Classes
- AnnotatorModel
- val addedSpecialTokens: MapFeature[String, Int]
- Attributes
- protected[nlp]
- def afterAnnotate(dataset: DataFrame): DataFrame
- Attributes
- protected
- Definition Classes
- AnnotatorModel
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def batchAnnotate(batchedAnnotations: Seq[Array[AnnotationAudio]]): Seq[Seq[Annotation]]
Takes audio annotations and produces transcribed document annotations.
Takes audio annotations and produces transcribed document annotations.
- batchedAnnotations
Audio annotations in batches
- returns
Transcribed audio as DOCUMENT type annotation
- Definition Classes
- WhisperForCTC → HasBatchedAnnotateAudio
- def batchProcess(rows: Iterator[_]): Iterator[Row]
- Definition Classes
- HasBatchedAnnotateAudio
- val batchSize: IntParam
Size of every batch (Default depends on model).
Size of every batch (Default depends on model).
- Definition Classes
- HasBatchedAnnotateAudio
- val beamSize: IntParam
Beam size for the beam search algorithm (Default:
4)Beam size for the beam search algorithm (Default:
4)- Definition Classes
- HasGeneratorProperties
- def beforeAnnotate(dataset: Dataset[_]): Dataset[_]
- Attributes
- protected
- Definition Classes
- AnnotatorModel
- final def checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def clear(param: Param[_]): WhisperForCTC.this.type
- Definition Classes
- Params
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @HotSpotIntrinsicCandidate() @native()
- val configProtoBytes: IntArrayParam
ConfigProto from tensorflow, serialized into byte array.
ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()
- def copy(extra: ParamMap): WhisperForCTC
requirement for annotators copies
requirement for annotators copies
- Definition Classes
- RawAnnotator → Model → Transformer → PipelineStage → Params
- def copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
- final def defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
- val doNormalize: BooleanParam
Whether or not to normalize the input with mean and standard deviation
Whether or not to normalize the input with mean and standard deviation
- Definition Classes
- HasAudioFeatureProperties
- val doSample: BooleanParam
Whether or not to use sampling, use greedy decoding otherwise (Default:
false)Whether or not to use sampling, use greedy decoding otherwise (Default:
false)- Definition Classes
- HasGeneratorProperties
- val engine: Param[String]
This param is set internally once via loadSavedModel.
This param is set internally once via loadSavedModel. That's why there is no setter
- Definition Classes
- HasEngine
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def explainParam(param: Param[_]): String
- Definition Classes
- Params
- def explainParams(): String
- Definition Classes
- Params
- def extraValidate(structType: StructType): Boolean
- Attributes
- protected
- Definition Classes
- RawAnnotator
- def extraValidateMsg: String
Override for additional custom schema checks
Override for additional custom schema checks
- Attributes
- protected
- Definition Classes
- RawAnnotator
- final def extractParamMap(): ParamMap
- Definition Classes
- Params
- final def extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
- val featureSize: IntParam
- Definition Classes
- HasAudioFeatureProperties
- val features: ArrayBuffer[Feature[_, _, _]]
- Definition Classes
- HasFeatures
- val generationConfig: StructFeature[GenerationConfig]
- Attributes
- protected[nlp]
- def get[T](feature: StructFeature[T]): Option[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def get[T](feature: SetFeature[T]): Option[Set[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def get[T](feature: ArrayFeature[T]): Option[Array[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getAddedSpecialTokens: Map[String, Int]
- Attributes
- protected[nlp]
- def getBatchSize: Int
Size of every batch.
Size of every batch.
- Definition Classes
- HasBatchedAnnotateAudio
- def getBeamSize: Int
- Definition Classes
- HasGeneratorProperties
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- def getConfigProtoBytes: Option[Array[Byte]]
ConfigProto from tensorflow, serialized into byte array.
ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()
- final def getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getDoNormalize: Boolean
- Definition Classes
- HasAudioFeatureProperties
- def getDoSample: Boolean
- Definition Classes
- HasGeneratorProperties
- def getEngine: String
- Definition Classes
- HasEngine
- def getFeatureSize: Int
- Definition Classes
- HasAudioFeatureProperties
- def getGenerationConfig: GenerationConfig
- Attributes
- protected[nlp]
- def getInputCols: Array[String]
- returns
input annotations columns currently used
- Definition Classes
- HasInputAnnotationCols
- def getIsMultilingual: Boolean
- def getLanguage: Option[String]
- def getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
- def getMaxOutputLength: Int
- Definition Classes
- HasGeneratorProperties
- def getMinOutputLength: Int
- Definition Classes
- HasGeneratorProperties
- def getModelIfNotSet: Whisper
- def getNReturnSequences: Int
- Definition Classes
- HasGeneratorProperties
- def getNoRepeatNgramSize: Int
- Definition Classes
- HasGeneratorProperties
- final def getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
- final def getOutputCol: String
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
- HasOutputAnnotationCol
- def getPaddingSide: String
- Definition Classes
- HasAudioFeatureProperties
- def getPaddingValue: Float
- Definition Classes
- HasAudioFeatureProperties
- def getParam(paramName: String): Param[Any]
- Definition Classes
- Params
- def getPreprocessor: WhisperPreprocessor
- Attributes
- protected[nlp]
- def getRandomSeed: Option[Long]
- Definition Classes
- HasGeneratorProperties
- def getRepetitionPenalty: Double
- Definition Classes
- HasGeneratorProperties
- def getReturnAttentionMask: Boolean
- Definition Classes
- HasAudioFeatureProperties
- def getSamplingRate: Int
- Definition Classes
- HasAudioFeatureProperties
- def getSignatures: Option[Map[String, String]]
- def getStopTokenIds: Array[Int]
- Definition Classes
- HasGeneratorProperties
- def getTask: Option[String]
- Definition Classes
- HasGeneratorProperties
- def getTemperature: Double
- Definition Classes
- HasGeneratorProperties
- def getTopK: Int
- Definition Classes
- HasGeneratorProperties
- def getTopP: Double
- Definition Classes
- HasGeneratorProperties
- def getVocabulary: Map[String, Int]
- final def hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
- def hasParam(paramName: String): Boolean
- Definition Classes
- Params
- def hasParent: Boolean
- Definition Classes
- Model
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- def initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
- val inputAnnotatorTypes: Array[AnnotatorType]
Annotator reference id.
Annotator reference id. Used to identify elements in metadata or to refer to this annotator type
- Definition Classes
- WhisperForCTC → HasInputAnnotationCols
- final val inputCols: StringArrayParam
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- val isMultilingual: ProtectedParam[Boolean]
Whether or not the model is multilingual.
- final def isSet(param: Param[_]): Boolean
- Definition Classes
- Params
- def isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- val language: Param[String]
Optional language to set for the transcription.
Optional language to set for the transcription. The imported model needs to support multiple languages.
- val lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
- def log: Logger
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logName: String
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- val maxInputLength: IntParam
max length of the input sequence (Default:
0)max length of the input sequence (Default:
0)- Definition Classes
- HasGeneratorProperties
- val maxOutputLength: IntParam
Maximum length of the sequence to be generated (Default:
20)Maximum length of the sequence to be generated (Default:
20)- Definition Classes
- HasGeneratorProperties
- val minOutputLength: IntParam
Minimum length of the sequence to be generated (Default:
0)Minimum length of the sequence to be generated (Default:
0)- Definition Classes
- HasGeneratorProperties
- def msgHelper(schema: StructType): String
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- val nReturnSequences: IntParam
The number of sequences to return from the beam search.
The number of sequences to return from the beam search.
- Definition Classes
- HasGeneratorProperties
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- val noRepeatNgramSize: IntParam
If set to int >
0, all ngrams of that size can only occur once (Default:0)If set to int >
0, all ngrams of that size can only occur once (Default:0)- Definition Classes
- HasGeneratorProperties
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- def onWrite(path: String, spark: SparkSession): Unit
- Definition Classes
- WhisperForCTC → ParamsAndFeaturesWritable
- val optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
- val outputAnnotatorType: AnnotatorType
- Definition Classes
- WhisperForCTC → HasOutputAnnotatorType
- final val outputCol: Param[String]
- Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
- val paddingSide: Param[String]
- Definition Classes
- HasAudioFeatureProperties
- val paddingValue: FloatParam
- Definition Classes
- HasAudioFeatureProperties
- lazy val params: Array[Param[_]]
- Definition Classes
- Params
- var parent: Estimator[WhisperForCTC]
- Definition Classes
- Model
- val preprocessor: StructFeature[WhisperPreprocessor]
- Attributes
- protected[nlp]
- val randomSeed: Option[Long]
Optional Random seed for the model.
Optional Random seed for the model. Needs to be of type
Int.- Definition Classes
- HasGeneratorProperties
- val repetitionPenalty: DoubleParam
The parameter for repetition penalty (Default:
1.0).The parameter for repetition penalty (Default:
1.0).1.0means no penalty. See this paper for more details.- Definition Classes
- HasGeneratorProperties
- val returnAttentionMask: BooleanParam
- Definition Classes
- HasAudioFeatureProperties
- val samplingRate: IntParam
- Definition Classes
- HasAudioFeatureProperties
- def save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @throws("If the input path already exists but overwrite is not enabled.") @Since("1.6.0")
- def set[T](param: ProtectedParam[T], value: T): WhisperForCTC.this.type
Sets the value for a protected Param.
Sets the value for a protected Param.
If the parameter was already set, it will not be set again. Default values do not count as a set value and can be overridden.
- T
Type of the parameter
- param
Protected parameter to set
- value
Value for the parameter
- returns
This object
- Definition Classes
- HasProtectedParams
- def set[T](feature: StructFeature[T], value: T): WhisperForCTC.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def set[K, V](feature: MapFeature[K, V], value: Map[K, V]): WhisperForCTC.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def set[T](feature: SetFeature[T], value: Set[T]): WhisperForCTC.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def set[T](feature: ArrayFeature[T], value: Array[T]): WhisperForCTC.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def set(paramPair: ParamPair[_]): WhisperForCTC.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def set(param: String, value: Any): WhisperForCTC.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def set[T](param: Param[T], value: T): WhisperForCTC.this.type
- Definition Classes
- Params
- def setAddedSpecialTokens(value: Map[String, Int]): WhisperForCTC.this.type
- Attributes
- protected[nlp]
- def setBatchSize(size: Int): WhisperForCTC.this.type
Size of every batch.
Size of every batch.
- Definition Classes
- HasBatchedAnnotateAudio
- def setBeamSize(beamNum: Int): WhisperForCTC.this.type
- Definition Classes
- HasGeneratorProperties
- def setConfigProtoBytes(bytes: Array[Int]): WhisperForCTC.this.type
ConfigProto from tensorflow, serialized into byte array.
ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()
- def setDefault[T](feature: StructFeature[T], value: () => T): WhisperForCTC.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def setDefault[K, V](feature: MapFeature[K, V], value: () => Map[K, V]): WhisperForCTC.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def setDefault[T](feature: SetFeature[T], value: () => Set[T]): WhisperForCTC.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def setDefault[T](feature: ArrayFeature[T], value: () => Array[T]): WhisperForCTC.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def setDefault(paramPairs: ParamPair[_]*): WhisperForCTC.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def setDefault[T](param: Param[T], value: T): WhisperForCTC.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
- def setDoNormalize(value: Boolean): WhisperForCTC.this.type
- Definition Classes
- HasAudioFeatureProperties
- def setDoSample(value: Boolean): WhisperForCTC.this.type
- Definition Classes
- HasGeneratorProperties
- def setFeatureSize(value: Int): WhisperForCTC.this.type
- Definition Classes
- HasAudioFeatureProperties
- def setGenerationConfig(value: GenerationConfig): WhisperForCTC.this.type
- Attributes
- protected[nlp]
- final def setInputCols(value: String*): WhisperForCTC.this.type
- Definition Classes
- HasInputAnnotationCols
- def setInputCols(value: Array[String]): WhisperForCTC.this.type
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
- HasInputAnnotationCols
- def setIsMultilingual(value: Boolean): WhisperForCTC.this.type
- def setLanguage(value: String): WhisperForCTC.this.type
Sets the language for the audio, formatted to e.g.
Sets the language for the audio, formatted to e.g.
<|en|>. Check the model description for supported languages. - def setLazyAnnotator(value: Boolean): WhisperForCTC.this.type
- Definition Classes
- CanBeLazy
- def setMaxInputLength(value: Int): WhisperForCTC.this.type
- Definition Classes
- HasGeneratorProperties
- def setMaxOutputLength(value: Int): WhisperForCTC.this.type
- Definition Classes
- HasGeneratorProperties
- def setMinOutputLength(value: Int): WhisperForCTC.this.type
- Definition Classes
- HasGeneratorProperties
- def setModelIfNotSet(spark: SparkSession, tensorflowWrapper: Option[TensorflowWrapper], onnxWrappers: Option[EncoderDecoderWrappers], openvinoWrapper: Option[EncoderDecoderWrappers]): WhisperForCTC.this.type
- def setNReturnSequences(beamNum: Int): WhisperForCTC.this.type
- Definition Classes
- HasGeneratorProperties
- def setNoRepeatNgramSize(value: Int): WhisperForCTC.this.type
- Definition Classes
- HasGeneratorProperties
- final def setOutputCol(value: String): WhisperForCTC.this.type
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
- HasOutputAnnotationCol
- def setPaddingSide(value: String): WhisperForCTC.this.type
- Definition Classes
- HasAudioFeatureProperties
- def setPaddingValue(value: Float): WhisperForCTC.this.type
- Definition Classes
- HasAudioFeatureProperties
- def setParent(parent: Estimator[WhisperForCTC]): WhisperForCTC
- Definition Classes
- Model
- def setPreprocessor(value: WhisperPreprocessor): WhisperForCTC.this.type
- Attributes
- protected[nlp]
- def setRandomSeed(value: Long): WhisperForCTC.this.type
- Definition Classes
- HasGeneratorProperties
- def setRepetitionPenalty(value: Double): WhisperForCTC.this.type
- Definition Classes
- HasGeneratorProperties
- def setReturnAttentionMask(value: Boolean): WhisperForCTC.this.type
- Definition Classes
- HasAudioFeatureProperties
- def setSamplingRate(value: Int): WhisperForCTC.this.type
- Definition Classes
- HasAudioFeatureProperties
- def setSignatures(value: Map[String, String]): WhisperForCTC.this.type
- def setStopTokenIds(value: Array[Int]): WhisperForCTC.this.type
- Definition Classes
- HasGeneratorProperties
- def setTask(value: String): WhisperForCTC.this.type
Sets the formatted task for the audio.
Sets the formatted task for the audio. Either
<|translate|>or<|transcribe|>.Only multilingual models can do translation.
- Definition Classes
- WhisperForCTC → HasGeneratorProperties
- def setTemperature(value: Double): WhisperForCTC.this.type
- Definition Classes
- HasGeneratorProperties
- def setTopK(value: Int): WhisperForCTC.this.type
- Definition Classes
- HasGeneratorProperties
- def setTopP(value: Double): WhisperForCTC.this.type
- Definition Classes
- HasGeneratorProperties
- def setVocabulary(value: Map[String, Int]): WhisperForCTC.this.type
- val signatures: MapFeature[AnnotatorType, AnnotatorType]
It contains TF model signatures for the loaded saved model
- val stopTokenIds: IntArrayParam
Stop tokens to terminate the generation
Stop tokens to terminate the generation
- Definition Classes
- HasGeneratorProperties
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- val task: Param[String]
Set transformer task, e.g.
Set transformer task, e.g.
"summarize:"(Default:"").- Definition Classes
- HasGeneratorProperties
- val temperature: DoubleParam
The value used to module the next token probabilities (Default:
1.0)The value used to module the next token probabilities (Default:
1.0)- Definition Classes
- HasGeneratorProperties
- def toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
- val topK: IntParam
The number of highest probability vocabulary tokens to keep for top-k-filtering (Default:
50)The number of highest probability vocabulary tokens to keep for top-k-filtering (Default:
50)- Definition Classes
- HasGeneratorProperties
- val topP: DoubleParam
If set to float <
1.0, only the most probable tokens with probabilities that add up totopPor higher are kept for generation (Default:1.0)If set to float <
1.0, only the most probable tokens with probabilities that add up totopPor higher are kept for generation (Default:1.0)- Definition Classes
- HasGeneratorProperties
- final def transform(dataset: Dataset[_]): DataFrame
Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content
Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content
- dataset
Dataset[Row]
- Definition Classes
- AnnotatorModel → Transformer
- def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since("2.0.0")
- def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
- Definition Classes
- Transformer
- Annotations
- @varargs() @Since("2.0.0")
- final def transformSchema(schema: StructType): StructType
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
- RawAnnotator → PipelineStage
- def transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
- val uid: String
- Definition Classes
- WhisperForCTC → Identifiable
- def validate(schema: StructType): Boolean
takes a Dataset and checks to see if all the required annotation types are present.
takes a Dataset and checks to see if all the required annotation types are present.
- schema
to be validated
- returns
True if all the required types are present, else false
- Attributes
- protected
- Definition Classes
- RawAnnotator
- val vocabulary: MapFeature[String, Int]
Vocabulary used to encode the words to ids
Vocabulary used to encode the words to ids
- Attributes
- protected[nlp]
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- def wrapColumnMetadata(col: Column): Column
- Attributes
- protected
- Definition Classes
- RawAnnotator
- def write: MLWriter
- Definition Classes
- ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
- def writeOnnxModel(path: String, spark: SparkSession, onnxWrapper: OnnxWrapper, suffix: String, fileName: String): Unit
- Definition Classes
- WriteOnnxModel
- def writeOnnxModels(path: String, spark: SparkSession, onnxWrappersWithNames: Seq[(OnnxWrapper, String)], suffix: String): Unit
- Definition Classes
- WriteOnnxModel
- def writeOpenvinoModel(path: String, spark: SparkSession, openvinoWrapper: OpenvinoWrapper, suffix: String, fileName: String): Unit
- Definition Classes
- WriteOpenvinoModel
- def writeOpenvinoModels(path: String, spark: SparkSession, ovWrappersWithNames: Seq[(OpenvinoWrapper, String)], suffix: String): Unit
- Definition Classes
- WriteOpenvinoModel
- def writeTensorflowHub(path: String, tfPath: String, spark: SparkSession, suffix: String = "_use"): Unit
- Definition Classes
- WriteTensorflowModel
- def writeTensorflowModel(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None): Unit
- Definition Classes
- WriteTensorflowModel
- def writeTensorflowModelV2(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None, savedSignatures: Option[Map[String, String]] = None): Unit
- Definition Classes
- WriteTensorflowModel
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
(Since version 9)
Inherited from HasProtectedParams
Inherited from HasGeneratorProperties
Inherited from HasEngine
Inherited from WriteOnnxModel
Inherited from WriteOpenvinoModel
Inherited from WriteTensorflowModel
Inherited from HasAudioFeatureProperties
Inherited from HasBatchedAnnotateAudio[WhisperForCTC]
Inherited from AnnotatorModel[WhisperForCTC]
Inherited from CanBeLazy
Inherited from RawAnnotator[WhisperForCTC]
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from HasOutputAnnotatorType
Inherited from ParamsAndFeaturesWritable
Inherited from HasFeatures
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from Model[WhisperForCTC]
Inherited from Transformer
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.