class LLAVAForMultiModal extends AnnotatorModel[LLAVAForMultiModal] with HasBatchedAnnotateImage[LLAVAForMultiModal] with HasImageFeatureProperties with WriteOpenvinoModel with HasGeneratorProperties with HasEngine
LLAVAForMultiModal can load LLAVA Vision models for visual question answering. The model consists of a vision encoder, a text encoder as well as a text decoder. The vision encoder will encode the input image, the text encoder will encode the input question together with the encoding of the image, and the text decoder will output the answer to the question.
Pretrained models can be loaded with pretrained of the companion object:
val visualQA = LLAVAForMultiModal.pretrained() .setInputCols("image_assembler") .setOutputCol("answer")
The default model is "llava_1_5_7b_hf", if no name is provided.
For available pretrained models please see the Models Hub.
Models from the HuggingFace 🤗 Transformers library are also compatible with Spark NLP 🚀. To see which models are compatible and how to import them see https://github.com/JohnSnowLabs/spark-nlp/discussions/5669 and to see more extended examples, see https://github.com/JohnSnowLabs/spark-nlp/blob/master/src/test/scala/com/johnsnowlabs/nlp/annotators/cv/LLAVAForMultiModalTest.scala.
Example
import spark.implicits._ import com.johnsnowlabs.nlp.base._ import com.johnsnowlabs.nlp.annotator._ import org.apache.spark.ml.Pipeline val imageDF: DataFrame = ResourceHelper.spark.read .format("image") .option("dropInvalid", value = true) .load(imageFolder) val testDF: DataFrame = imageDF.withColumn("text", lit("USER: \n <|image|> \nWhat is unusual on this picture? \n ASSISTANT:\n")) val imageAssembler: ImageAssembler = new ImageAssembler() .setInputCol("image") .setOutputCol("image_assembler") val visualQAClassifier = LLAVAForMultiModal.pretrained() .setInputCols("image_assembler") .setOutputCol("answer") val pipeline = new Pipeline().setStages(Array( imageAssembler, visualQAClassifier )) val result = pipeline.fit(testDF).transform(testDF) result.select("image_assembler.origin", "answer.result").show(false) +--------------------------------------+------+ |origin |result| +--------------------------------------+------+ |[file:///content/images/cat_image.jpg]|[The unusual aspect of this picture is the presence of two cats lying on a pink couch]| +--------------------------------------+------+
- See also
CLIPForZeroShotClassification for Zero Shot Image Classifier
Annotators Main Page for a list of transformer based classifiers
- Grouped
- Alphabetic
- By Inheritance
- LLAVAForMultiModal
- HasEngine
- HasGeneratorProperties
- WriteOpenvinoModel
- HasImageFeatureProperties
- HasBatchedAnnotateImage
- AnnotatorModel
- CanBeLazy
- RawAnnotator
- HasOutputAnnotationCol
- HasInputAnnotationCols
- HasOutputAnnotatorType
- ParamsAndFeaturesWritable
- HasFeatures
- DefaultParamsWritable
- MLWritable
- Model
- Transformer
- PipelineStage
- Logging
- Params
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
Type Members
- type AnnotationContent = Seq[Row]
internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI
internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI
- Attributes
- protected
- Definition Classes
- AnnotatorModel
- type AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def $[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
- def $$[T](feature: StructFeature[T]): T
- Attributes
- protected
- Definition Classes
- HasFeatures
- def $$[K, V](feature: MapFeature[K, V]): Map[K, V]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def $$[T](feature: SetFeature[T]): Set[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def $$[T](feature: ArrayFeature[T]): Array[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def _transform(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): DataFrame
- Attributes
- protected
- Definition Classes
- AnnotatorModel
- val addedTokens: MapFeature[String, Int]
Additional tokens to be added to the vocabulary
- def afterAnnotate(dataset: DataFrame): DataFrame
- Attributes
- protected
- Definition Classes
- AnnotatorModel
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def batchAnnotate(batchedAnnotations: Seq[Array[AnnotationImage]]): Seq[Seq[Annotation]]
takes a document and annotations and produces new annotations of this annotator's annotation type
takes a document and annotations and produces new annotations of this annotator's annotation type
- batchedAnnotations
Annotations in batches that correspond to inputAnnotationCols generated by previous annotators if any
- returns
any number of annotations processed for every batch of input annotations. Not necessary one to one relationship
- Definition Classes
- LLAVAForMultiModal → HasBatchedAnnotateImage
- def batchProcess(rows: Iterator[_]): Iterator[Row]
- Definition Classes
- HasBatchedAnnotateImage
- val batchSize: IntParam
Size of every batch (Default depends on model).
Size of every batch (Default depends on model).
- Definition Classes
- HasBatchedAnnotateImage
- val beamSize: IntParam
Beam size for the beam search algorithm (Default:
4)Beam size for the beam search algorithm (Default:
4)- Definition Classes
- HasGeneratorProperties
- def beforeAnnotate(dataset: Dataset[_]): Dataset[_]
- Attributes
- protected
- Definition Classes
- AnnotatorModel
- final def checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def clear(param: Param[_]): LLAVAForMultiModal.this.type
- Definition Classes
- Params
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @HotSpotIntrinsicCandidate() @native()
- def copy(extra: ParamMap): LLAVAForMultiModal
requirement for annotators copies
requirement for annotators copies
- Definition Classes
- RawAnnotator → Model → Transformer → PipelineStage → Params
- def copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
- final def defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
- val doNormalize: BooleanParam
Whether or not to normalize the input with mean and standard deviation
Whether or not to normalize the input with mean and standard deviation
- Definition Classes
- HasImageFeatureProperties
- val doResize: BooleanParam
Whether to resize the input to a certain size
Whether to resize the input to a certain size
- Definition Classes
- HasImageFeatureProperties
- val doSample: BooleanParam
Whether or not to use sampling, use greedy decoding otherwise (Default:
false)Whether or not to use sampling, use greedy decoding otherwise (Default:
false)- Definition Classes
- HasGeneratorProperties
- val engine: Param[String]
This param is set internally once via loadSavedModel.
This param is set internally once via loadSavedModel. That's why there is no setter
- Definition Classes
- HasEngine
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def explainParam(param: Param[_]): String
- Definition Classes
- Params
- def explainParams(): String
- Definition Classes
- Params
- def extraValidate(structType: StructType): Boolean
- Attributes
- protected
- Definition Classes
- RawAnnotator
- def extraValidateMsg: String
Override for additional custom schema checks
Override for additional custom schema checks
- Attributes
- protected
- Definition Classes
- RawAnnotator
- final def extractParamMap(): ParamMap
- Definition Classes
- Params
- final def extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
- val featureExtractorType: Param[String]
Name of model's architecture for feature extraction
Name of model's architecture for feature extraction
- Definition Classes
- HasImageFeatureProperties
- val features: ArrayBuffer[Feature[_, _, _]]
- Definition Classes
- HasFeatures
- val generationConfig: StructFeature[GenerationConfig]
- def get[T](feature: StructFeature[T]): Option[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def get[T](feature: SetFeature[T]): Option[Set[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def get[T](feature: ArrayFeature[T]): Option[Array[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getBatchSize: Int
Size of every batch.
Size of every batch.
- Definition Classes
- HasBatchedAnnotateImage
- def getBeamSize: Int
- Definition Classes
- HasGeneratorProperties
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- final def getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getDoNormalize: Boolean
- Definition Classes
- HasImageFeatureProperties
- def getDoResize: Boolean
- Definition Classes
- HasImageFeatureProperties
- def getDoSample: Boolean
- Definition Classes
- HasGeneratorProperties
- def getEngine: String
- Definition Classes
- HasEngine
- def getFeatureExtractorType: String
- Definition Classes
- HasImageFeatureProperties
- def getGenerationConfig: GenerationConfig
- def getIgnoreTokenIds: Array[Int]
- def getImageMean: Array[Double]
- Definition Classes
- HasImageFeatureProperties
- def getImageStd: Array[Double]
- Definition Classes
- HasImageFeatureProperties
- def getImageToken: Int
- def getImageTokenLength: Int
- def getInputCols: Array[String]
- returns
input annotations columns currently used
- Definition Classes
- HasInputAnnotationCols
- def getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
- def getMaxOutputLength: Int
- Definition Classes
- HasGeneratorProperties
- def getMinOutputLength: Int
- Definition Classes
- HasGeneratorProperties
- def getModelIfNotSet: LLaVA
- def getNReturnSequences: Int
- Definition Classes
- HasGeneratorProperties
- def getNoRepeatNgramSize: Int
- Definition Classes
- HasGeneratorProperties
- final def getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
- final def getOutputCol: String
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
- HasOutputAnnotationCol
- def getParam(paramName: String): Param[Any]
- Definition Classes
- Params
- def getRandomSeed: Option[Long]
- Definition Classes
- HasGeneratorProperties
- def getRepetitionPenalty: Double
- Definition Classes
- HasGeneratorProperties
- def getResample: Int
- Definition Classes
- HasImageFeatureProperties
- def getSize: Int
- Definition Classes
- HasImageFeatureProperties
- def getStopTokenIds: Array[Int]
- Definition Classes
- LLAVAForMultiModal → HasGeneratorProperties
- def getTask: Option[String]
- Definition Classes
- HasGeneratorProperties
- def getTemperature: Double
- Definition Classes
- HasGeneratorProperties
- def getTopK: Int
- Definition Classes
- HasGeneratorProperties
- def getTopP: Double
- Definition Classes
- HasGeneratorProperties
- final def hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
- def hasParam(paramName: String): Boolean
- Definition Classes
- Params
- def hasParent: Boolean
- Definition Classes
- Model
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- var ignoreTokenIds: IntArrayParam
A list of token ids which are ignored in the decoder's output (Default:
Array()) - val imageMean: DoubleArrayParam
The sequence of means for each channel, to be used when normalizing images
The sequence of means for each channel, to be used when normalizing images
- Definition Classes
- HasImageFeatureProperties
- val imageStd: DoubleArrayParam
The sequence of standard deviations for each channel, to be used when normalizing images
The sequence of standard deviations for each channel, to be used when normalizing images
- Definition Classes
- HasImageFeatureProperties
- val imageToken: IntParam
- val imageTokenLength: IntParam
- def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- def initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
- val inputAnnotatorTypes: Array[AnnotatorType]
Annotator reference id.
Annotator reference id. Used to identify elements in metadata or to refer to this annotator type
- Definition Classes
- LLAVAForMultiModal → HasInputAnnotationCols
- final val inputCols: StringArrayParam
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- final def isSet(param: Param[_]): Boolean
- Definition Classes
- Params
- def isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- val lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
- def log: Logger
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logName: String
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- val maxInputLength: IntParam
max length of the input sequence (Default:
0)max length of the input sequence (Default:
0)- Definition Classes
- HasGeneratorProperties
- val maxOutputLength: IntParam
Maximum length of the sequence to be generated (Default:
20)Maximum length of the sequence to be generated (Default:
20)- Definition Classes
- HasGeneratorProperties
- val merges: MapFeature[(String, String), Int]
Holding merges.txt coming from RoBERTa model
- val minOutputLength: IntParam
Minimum length of the sequence to be generated (Default:
0)Minimum length of the sequence to be generated (Default:
0)- Definition Classes
- HasGeneratorProperties
- def msgHelper(schema: StructType): String
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- val nReturnSequences: IntParam
The number of sequences to return from the beam search.
The number of sequences to return from the beam search.
- Definition Classes
- HasGeneratorProperties
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- val noRepeatNgramSize: IntParam
If set to int >
0, all ngrams of that size can only occur once (Default:0)If set to int >
0, all ngrams of that size can only occur once (Default:0)- Definition Classes
- HasGeneratorProperties
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- def onWrite(path: String, spark: SparkSession): Unit
- Definition Classes
- LLAVAForMultiModal → ParamsAndFeaturesWritable
- val optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
- val outputAnnotatorType: AnnotatorType
- Definition Classes
- LLAVAForMultiModal → HasOutputAnnotatorType
- final val outputCol: Param[String]
- Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
- lazy val params: Array[Param[_]]
- Definition Classes
- Params
- var parent: Estimator[LLAVAForMultiModal]
- Definition Classes
- Model
- val randomSeed: Option[Long]
Optional Random seed for the model.
Optional Random seed for the model. Needs to be of type
Int.- Definition Classes
- HasGeneratorProperties
- val repetitionPenalty: DoubleParam
The parameter for repetition penalty (Default:
1.0).The parameter for repetition penalty (Default:
1.0).1.0means no penalty. See this paper for more details.- Definition Classes
- HasGeneratorProperties
- val resample: IntParam
An optional resampling filter.
An optional resampling filter. This can be one of PIL.Image.NEAREST, PIL.Image.BOX, PIL.Image.BILINEAR, PIL.Image.HAMMING, PIL.Image.BICUBIC or PIL.Image.LANCZOS. Only has an effect if do_resize is set to True
- Definition Classes
- HasImageFeatureProperties
- def save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @throws("If the input path already exists but overwrite is not enabled.") @Since("1.6.0")
- def set[T](feature: StructFeature[T], value: T): LLAVAForMultiModal.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def set[K, V](feature: MapFeature[K, V], value: Map[K, V]): LLAVAForMultiModal.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def set[T](feature: SetFeature[T], value: Set[T]): LLAVAForMultiModal.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def set[T](feature: ArrayFeature[T], value: Array[T]): LLAVAForMultiModal.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def set(paramPair: ParamPair[_]): LLAVAForMultiModal.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def set(param: String, value: Any): LLAVAForMultiModal.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def set[T](param: Param[T], value: T): LLAVAForMultiModal.this.type
- Definition Classes
- Params
- def setAddedTokens(value: Map[String, Int]): LLAVAForMultiModal.this.type
- def setBatchSize(size: Int): LLAVAForMultiModal.this.type
Size of every batch.
Size of every batch.
- Definition Classes
- HasBatchedAnnotateImage
- def setBeamSize(beamNum: Int): LLAVAForMultiModal.this.type
- Definition Classes
- HasGeneratorProperties
- def setDefault[T](feature: StructFeature[T], value: () => T): LLAVAForMultiModal.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def setDefault[K, V](feature: MapFeature[K, V], value: () => Map[K, V]): LLAVAForMultiModal.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def setDefault[T](feature: SetFeature[T], value: () => Set[T]): LLAVAForMultiModal.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def setDefault[T](feature: ArrayFeature[T], value: () => Array[T]): LLAVAForMultiModal.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def setDefault(paramPairs: ParamPair[_]*): LLAVAForMultiModal.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def setDefault[T](param: Param[T], value: T): LLAVAForMultiModal.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
- def setDoNormalize(value: Boolean): LLAVAForMultiModal.this.type
- Definition Classes
- HasImageFeatureProperties
- def setDoResize(value: Boolean): LLAVAForMultiModal.this.type
- Definition Classes
- HasImageFeatureProperties
- def setDoSample(value: Boolean): LLAVAForMultiModal.this.type
- Definition Classes
- HasGeneratorProperties
- def setFeatureExtractorType(value: String): LLAVAForMultiModal.this.type
- Definition Classes
- HasImageFeatureProperties
- def setGenerationConfig(value: GenerationConfig): LLAVAForMultiModal.this.type
- def setIgnoreTokenIds(tokenIds: Array[Int]): LLAVAForMultiModal.this.type
- def setImageMean(value: Array[Double]): LLAVAForMultiModal.this.type
- Definition Classes
- HasImageFeatureProperties
- def setImageStd(value: Array[Double]): LLAVAForMultiModal.this.type
- Definition Classes
- HasImageFeatureProperties
- def setImageToken(value: Int): LLAVAForMultiModal.this.type
- def setImageTokenLength(value: Int): LLAVAForMultiModal.this.type
- final def setInputCols(value: String*): LLAVAForMultiModal.this.type
- Definition Classes
- HasInputAnnotationCols
- def setInputCols(value: Array[String]): LLAVAForMultiModal.this.type
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
- HasInputAnnotationCols
- def setLazyAnnotator(value: Boolean): LLAVAForMultiModal.this.type
- Definition Classes
- CanBeLazy
- def setMaxInputLength(value: Int): LLAVAForMultiModal.this.type
- Definition Classes
- HasGeneratorProperties
- def setMaxOutputLength(value: Int): LLAVAForMultiModal.this.type
- Definition Classes
- HasGeneratorProperties
- def setMerges(value: Map[(String, String), Int]): LLAVAForMultiModal.this.type
- def setMinOutputLength(value: Int): LLAVAForMultiModal.this.type
- Definition Classes
- HasGeneratorProperties
- def setModelIfNotSet(spark: SparkSession, preprocessor: Preprocessor, onnxWrappers: Option[DecoderWrappers], openvinoWrapper: Option[LLAVAWrappers]): LLAVAForMultiModal.this.type
- def setNReturnSequences(beamNum: Int): LLAVAForMultiModal.this.type
- Definition Classes
- HasGeneratorProperties
- def setNoRepeatNgramSize(value: Int): LLAVAForMultiModal.this.type
- Definition Classes
- HasGeneratorProperties
- final def setOutputCol(value: String): LLAVAForMultiModal.this.type
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
- HasOutputAnnotationCol
- def setParent(parent: Estimator[LLAVAForMultiModal]): LLAVAForMultiModal
- Definition Classes
- Model
- def setRandomSeed(value: Int): LLAVAForMultiModal.this.type
- def setRandomSeed(value: Long): LLAVAForMultiModal.this.type
- Definition Classes
- HasGeneratorProperties
- def setRepetitionPenalty(value: Double): LLAVAForMultiModal.this.type
- Definition Classes
- HasGeneratorProperties
- def setResample(value: Int): LLAVAForMultiModal.this.type
- Definition Classes
- HasImageFeatureProperties
- def setSize(value: Int): LLAVAForMultiModal.this.type
- Definition Classes
- HasImageFeatureProperties
- def setStopTokenIds(value: Array[Int]): LLAVAForMultiModal.this.type
- Definition Classes
- LLAVAForMultiModal → HasGeneratorProperties
- def setTask(value: String): LLAVAForMultiModal.this.type
- Definition Classes
- HasGeneratorProperties
- def setTemperature(value: Double): LLAVAForMultiModal.this.type
- Definition Classes
- HasGeneratorProperties
- def setTopK(value: Int): LLAVAForMultiModal.this.type
- Definition Classes
- HasGeneratorProperties
- def setTopP(value: Double): LLAVAForMultiModal.this.type
- Definition Classes
- HasGeneratorProperties
- def setVocabulary(value: Map[String, Int]): LLAVAForMultiModal.this.type
- val size: IntParam
Resize the input to the given size.
Resize the input to the given size. If a tuple is provided, it should be (width, height). If only an integer is provided, then the input will be resized to (size, size). Only has an effect if do_resize is set to True.
- Definition Classes
- HasImageFeatureProperties
- val stopTokenIds: IntArrayParam
Stop tokens to terminate the generation
Stop tokens to terminate the generation
- Definition Classes
- LLAVAForMultiModal → HasGeneratorProperties
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- val task: Param[String]
Set transformer task, e.g.
Set transformer task, e.g.
"summarize:"(Default:"").- Definition Classes
- HasGeneratorProperties
- val temperature: DoubleParam
The value used to module the next token probabilities (Default:
1.0)The value used to module the next token probabilities (Default:
1.0)- Definition Classes
- HasGeneratorProperties
- def toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
- val topK: IntParam
The number of highest probability vocabulary tokens to keep for top-k-filtering (Default:
50)The number of highest probability vocabulary tokens to keep for top-k-filtering (Default:
50)- Definition Classes
- HasGeneratorProperties
- val topP: DoubleParam
If set to float <
1.0, only the most probable tokens with probabilities that add up totopPor higher are kept for generation (Default:1.0)If set to float <
1.0, only the most probable tokens with probabilities that add up totopPor higher are kept for generation (Default:1.0)- Definition Classes
- HasGeneratorProperties
- final def transform(dataset: Dataset[_]): DataFrame
Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content
Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content
- dataset
Dataset[Row]
- Definition Classes
- AnnotatorModel → Transformer
- def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since("2.0.0")
- def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
- Definition Classes
- Transformer
- Annotations
- @varargs() @Since("2.0.0")
- final def transformSchema(schema: StructType): StructType
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
- RawAnnotator → PipelineStage
- def transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
- val uid: String
- Definition Classes
- LLAVAForMultiModal → Identifiable
- def validate(schema: StructType): Boolean
takes a Dataset and checks to see if all the required annotation types are present.
takes a Dataset and checks to see if all the required annotation types are present.
- schema
to be validated
- returns
True if all the required types are present, else false
- Attributes
- protected
- Definition Classes
- RawAnnotator
- val vocabulary: MapFeature[String, Int]
Vocabulary used to encode the words to ids with bpeTokenizer.encode
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- def wrapColumnMetadata(col: Column): Column
- Attributes
- protected
- Definition Classes
- RawAnnotator
- def write: MLWriter
- Definition Classes
- ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
- def writeOpenvinoModel(path: String, spark: SparkSession, openvinoWrapper: OpenvinoWrapper, suffix: String, fileName: String): Unit
- Definition Classes
- WriteOpenvinoModel
- def writeOpenvinoModels(path: String, spark: SparkSession, ovWrappersWithNames: Seq[(OpenvinoWrapper, String)], suffix: String): Unit
- Definition Classes
- WriteOpenvinoModel
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
(Since version 9)
Inherited from HasEngine
Inherited from HasGeneratorProperties
Inherited from WriteOpenvinoModel
Inherited from HasImageFeatureProperties
Inherited from HasBatchedAnnotateImage[LLAVAForMultiModal]
Inherited from AnnotatorModel[LLAVAForMultiModal]
Inherited from CanBeLazy
Inherited from RawAnnotator[LLAVAForMultiModal]
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from HasOutputAnnotatorType
Inherited from ParamsAndFeaturesWritable
Inherited from HasFeatures
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from Model[LLAVAForMultiModal]
Inherited from Transformer
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.