class StarCoderTransformer extends AnnotatorModel[StarCoderTransformer] with HasBatchedAnnotate[StarCoderTransformer] with ParamsAndFeaturesWritable with WriteOnnxModel with WriteOpenvinoModel with HasGeneratorProperties with HasEngine
StarCoder2: The Versatile Code Companion.
StarCoder2 is a Transformer model designed specifically for code generation and understanding. With 13 billion parameters, it builds upon the advancements of its predecessors and is trained on a diverse dataset that includes multiple programming languages. This extensive training allows StarCoder2 to support a wide array of coding tasks, from code completion to generation.
StarCoder2 was developed to assist developers in writing and understanding code more efficiently, making it a valuable tool for various software development and data science tasks.
Pretrained models can be loaded with pretrained of the companion object:
val starcoder2 = StarCoder2Transformer.pretrained() .setInputCols("document") .setOutputCol("generation")
The default model is "StarCoder2-3B", if no name is provided. For available pretrained
models please see the Models Hub.
For extended examples of usage, see StarCoder2TestSpec.
References:
Paper Abstract:
The BigCode project,1 an open-scientific collaboration focused on the responsible development of Large Language Models for Code (Code LLMs), introduces StarCoder2. In partnership with Software Heritage (SWH),2 we build The Stack v2 on top of the digital commons of their source code archive. Alongside the SWH repositories spanning 619 programming languages, we carefully select other high-quality data sources, such as GitHub pull requests, Kaggle notebooks, and code documentation. This results in a training set that is 4× larger than the first StarCoder dataset. We train StarCoder2 models with 3B, 7B, and 15B parameters on 3.3 to 4.3 trillion tokens and thoroughly evaluate them on a comprehensive set of Code LLM benchmarks.
We find that our small model, StarCoder2-3B, outperforms other Code LLMs of similar size on most benchmarks, and also outperforms StarCoderBase-15B. Our large model, StarCoder2- 15B, significantly outperforms other models of comparable size. In addition, it matches or outperforms CodeLlama-34B, a model more than twice its size. Although DeepSeekCoder- 33B is the best-performing model at code completion for high-resource languages, we find that StarCoder2-15B outperforms it on math and code reasoning benchmarks, as well as several low-resource languages. We make the model weights available under an OpenRAIL license and ensure full transparency regarding the training data by releasing the SoftWare Heritage persistent IDentifiers (SWHIDs) of the source code data.
Note:
This is a computationally intensive module, especially for larger code sequences. The use of an accelerator such as GPU is recommended.
Example
import spark.implicits._ import com.johnsnowlabs.nlp.base.DocumentAssembler import com.johnsnowlabs.nlp.annotators.seq2seq.StarCoder2Transformer import org.apache.spark.ml.Pipeline val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("documents") val starcoder2 = StarCoder2Transformer.pretrained("starcoder2") .setInputCols(Array("documents")) .setMinOutputLength(10) .setMaxOutputLength(50) .setDoSample(false) .setTopK(50) .setNoRepeatNgramSize(3) .setOutputCol("generation") val pipeline = new Pipeline().setStages(Array(documentAssembler, starcoder2)) val data = Seq( "def add(a, b):" ).toDF("text") val result = pipeline.fit(data).transform(data) results.select("generation.result").show(truncate = false) +----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ |result | +----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ |[def add(a, b): return a + b] | +----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
- Grouped
- Alphabetic
- By Inheritance
- StarCoderTransformer
- HasEngine
- HasGeneratorProperties
- WriteOpenvinoModel
- WriteOnnxModel
- HasBatchedAnnotate
- AnnotatorModel
- CanBeLazy
- RawAnnotator
- HasOutputAnnotationCol
- HasInputAnnotationCols
- HasOutputAnnotatorType
- ParamsAndFeaturesWritable
- HasFeatures
- DefaultParamsWritable
- MLWritable
- Model
- Transformer
- PipelineStage
- Logging
- Params
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
Type Members
- type AnnotationContent = Seq[Row]
internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI
internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI
- Attributes
- protected
- Definition Classes
- AnnotatorModel
- type AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def $[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
- def $$[T](feature: StructFeature[T]): T
- Attributes
- protected
- Definition Classes
- HasFeatures
- def $$[K, V](feature: MapFeature[K, V]): Map[K, V]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def $$[T](feature: SetFeature[T]): Set[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def $$[T](feature: ArrayFeature[T]): Array[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def _transform(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): DataFrame
- Attributes
- protected
- Definition Classes
- AnnotatorModel
- def afterAnnotate(dataset: DataFrame): DataFrame
- Attributes
- protected
- Definition Classes
- AnnotatorModel
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def batchAnnotate(batchedAnnotations: Seq[Array[Annotation]]): Seq[Seq[Annotation]]
takes a document and annotations and produces new annotations of this annotator's annotation type
takes a document and annotations and produces new annotations of this annotator's annotation type
- batchedAnnotations
Annotations that correspond to inputAnnotationCols generated by previous annotators if any
- returns
any number of annotations processed for every input annotation. Not necessary one to one relationship
- Definition Classes
- StarCoderTransformer → HasBatchedAnnotate
- def batchProcess(rows: Iterator[_]): Iterator[Row]
- Definition Classes
- HasBatchedAnnotate
- val batchSize: IntParam
Size of every batch (Default depends on model).
Size of every batch (Default depends on model).
- Definition Classes
- HasBatchedAnnotate
- val beamSize: IntParam
Beam size for the beam search algorithm (Default:
4)Beam size for the beam search algorithm (Default:
4)- Definition Classes
- HasGeneratorProperties
- def beforeAnnotate(dataset: Dataset[_]): Dataset[_]
- Attributes
- protected
- Definition Classes
- AnnotatorModel
- final def checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def clear(param: Param[_]): StarCoderTransformer.this.type
- Definition Classes
- Params
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @HotSpotIntrinsicCandidate() @native()
- def copy(extra: ParamMap): StarCoderTransformer
requirement for annotators copies
requirement for annotators copies
- Definition Classes
- RawAnnotator → Model → Transformer → PipelineStage → Params
- def copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
- final def defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
- val doSample: BooleanParam
Whether or not to use sampling, use greedy decoding otherwise (Default:
false)Whether or not to use sampling, use greedy decoding otherwise (Default:
false)- Definition Classes
- HasGeneratorProperties
- val engine: Param[String]
This param is set internally once via loadSavedModel.
This param is set internally once via loadSavedModel. That's why there is no setter
- Definition Classes
- HasEngine
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def explainParam(param: Param[_]): String
- Definition Classes
- Params
- def explainParams(): String
- Definition Classes
- Params
- def extraValidate(structType: StructType): Boolean
- Attributes
- protected
- Definition Classes
- RawAnnotator
- def extraValidateMsg: String
Override for additional custom schema checks
Override for additional custom schema checks
- Attributes
- protected
- Definition Classes
- RawAnnotator
- final def extractParamMap(): ParamMap
- Definition Classes
- Params
- final def extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
- val features: ArrayBuffer[Feature[_, _, _]]
- Definition Classes
- HasFeatures
- val generationConfig: StructFeature[GenerationConfig]
- def get[T](feature: StructFeature[T]): Option[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def get[T](feature: SetFeature[T]): Option[Set[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def get[T](feature: ArrayFeature[T]): Option[Array[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getBatchSize: Int
Size of every batch.
Size of every batch.
- Definition Classes
- HasBatchedAnnotate
- def getBeamSize: Int
- Definition Classes
- HasGeneratorProperties
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- final def getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getDoSample: Boolean
- Definition Classes
- HasGeneratorProperties
- def getEngine: String
- Definition Classes
- HasEngine
- def getGenerationConfig: GenerationConfig
- def getIgnoreTokenIds: Array[Int]
- def getInputCols: Array[String]
- returns
input annotations columns currently used
- Definition Classes
- HasInputAnnotationCols
- def getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
- def getMaxOutputLength: Int
- Definition Classes
- HasGeneratorProperties
- def getMinOutputLength: Int
- Definition Classes
- HasGeneratorProperties
- def getModelIfNotSet: StarCoder
- def getNReturnSequences: Int
- Definition Classes
- HasGeneratorProperties
- def getNoRepeatNgramSize: Int
- Definition Classes
- HasGeneratorProperties
- final def getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
- final def getOutputCol: String
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
- HasOutputAnnotationCol
- def getParam(paramName: String): Param[Any]
- Definition Classes
- Params
- def getRandomSeed: Option[Long]
- Definition Classes
- HasGeneratorProperties
- def getRepetitionPenalty: Double
- Definition Classes
- HasGeneratorProperties
- def getStopTokenIds: Array[Int]
- Definition Classes
- HasGeneratorProperties
- def getTask: Option[String]
- Definition Classes
- HasGeneratorProperties
- def getTemperature: Double
- Definition Classes
- HasGeneratorProperties
- def getTopK: Int
- Definition Classes
- HasGeneratorProperties
- def getTopP: Double
- Definition Classes
- HasGeneratorProperties
- final def hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
- def hasParam(paramName: String): Boolean
- Definition Classes
- Params
- def hasParent: Boolean
- Definition Classes
- Model
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- var ignoreTokenIds: IntArrayParam
A list of token ids which are ignored in the decoder's output (Default:
Array()) - def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- def initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
- val inputAnnotatorTypes: Array[AnnotatorType]
Input annotator type : DOCUMENT
Input annotator type : DOCUMENT
- Definition Classes
- StarCoderTransformer → HasInputAnnotationCols
- final val inputCols: StringArrayParam
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- final def isSet(param: Param[_]): Boolean
- Definition Classes
- Params
- def isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- val lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
- def log: Logger
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logName: String
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- val maxInputLength: IntParam
max length of the input sequence (Default:
0)max length of the input sequence (Default:
0)- Definition Classes
- HasGeneratorProperties
- val maxOutputLength: IntParam
Maximum length of the sequence to be generated (Default:
20)Maximum length of the sequence to be generated (Default:
20)- Definition Classes
- HasGeneratorProperties
- val merges: MapFeature[(String, String), Int]
Holding merges.txt coming from RoBERTa model
- val minOutputLength: IntParam
Minimum length of the sequence to be generated (Default:
0)Minimum length of the sequence to be generated (Default:
0)- Definition Classes
- HasGeneratorProperties
- def msgHelper(schema: StructType): String
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- val nReturnSequences: IntParam
The number of sequences to return from the beam search.
The number of sequences to return from the beam search.
- Definition Classes
- HasGeneratorProperties
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- val noRepeatNgramSize: IntParam
If set to int >
0, all ngrams of that size can only occur once (Default:0)If set to int >
0, all ngrams of that size can only occur once (Default:0)- Definition Classes
- HasGeneratorProperties
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- def onWrite(path: String, spark: SparkSession): Unit
- Definition Classes
- StarCoderTransformer → ParamsAndFeaturesWritable
- val optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
- val outputAnnotatorType: String
Output annotator type : DOCUMENT
Output annotator type : DOCUMENT
- Definition Classes
- StarCoderTransformer → HasOutputAnnotatorType
- final val outputCol: Param[String]
- Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
- lazy val params: Array[Param[_]]
- Definition Classes
- Params
- var parent: Estimator[StarCoderTransformer]
- Definition Classes
- Model
- val randomSeed: Option[Long]
Optional Random seed for the model.
Optional Random seed for the model. Needs to be of type
Int.- Definition Classes
- HasGeneratorProperties
- val repetitionPenalty: DoubleParam
The parameter for repetition penalty (Default:
1.0).The parameter for repetition penalty (Default:
1.0).1.0means no penalty. See this paper for more details.- Definition Classes
- HasGeneratorProperties
- def save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @throws("If the input path already exists but overwrite is not enabled.") @Since("1.6.0")
- def set[T](feature: StructFeature[T], value: T): StarCoderTransformer.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def set[K, V](feature: MapFeature[K, V], value: Map[K, V]): StarCoderTransformer.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def set[T](feature: SetFeature[T], value: Set[T]): StarCoderTransformer.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def set[T](feature: ArrayFeature[T], value: Array[T]): StarCoderTransformer.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def set(paramPair: ParamPair[_]): StarCoderTransformer.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def set(param: String, value: Any): StarCoderTransformer.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def set[T](param: Param[T], value: T): StarCoderTransformer.this.type
- Definition Classes
- Params
- def setBatchSize(size: Int): StarCoderTransformer.this.type
Size of every batch.
Size of every batch.
- Definition Classes
- HasBatchedAnnotate
- def setBeamSize(beamNum: Int): StarCoderTransformer.this.type
- Definition Classes
- HasGeneratorProperties
- def setDefault[T](feature: StructFeature[T], value: () => T): StarCoderTransformer.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def setDefault[K, V](feature: MapFeature[K, V], value: () => Map[K, V]): StarCoderTransformer.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def setDefault[T](feature: SetFeature[T], value: () => Set[T]): StarCoderTransformer.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def setDefault[T](feature: ArrayFeature[T], value: () => Array[T]): StarCoderTransformer.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def setDefault(paramPairs: ParamPair[_]*): StarCoderTransformer.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def setDefault[T](param: Param[T], value: T): StarCoderTransformer.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
- def setDoSample(value: Boolean): StarCoderTransformer.this.type
- Definition Classes
- HasGeneratorProperties
- def setGenerationConfig(value: GenerationConfig): StarCoderTransformer.this.type
- def setIgnoreTokenIds(tokenIds: Array[Int]): StarCoderTransformer.this.type
- final def setInputCols(value: String*): StarCoderTransformer.this.type
- Definition Classes
- HasInputAnnotationCols
- def setInputCols(value: Array[String]): StarCoderTransformer.this.type
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
- HasInputAnnotationCols
- def setLazyAnnotator(value: Boolean): StarCoderTransformer.this.type
- Definition Classes
- CanBeLazy
- def setMaxInputLength(value: Int): StarCoderTransformer.this.type
- Definition Classes
- HasGeneratorProperties
- def setMaxOutputLength(value: Int): StarCoderTransformer.this.type
- Definition Classes
- HasGeneratorProperties
- def setMerges(value: Map[(String, String), Int]): StarCoderTransformer.this.type
- def setMinOutputLength(value: Int): StarCoderTransformer.this.type
- Definition Classes
- HasGeneratorProperties
- def setModelIfNotSet(spark: SparkSession, onnxWrappers: Option[DecoderWrappers], openvinoWrapper: Option[OpenvinoWrapper]): StarCoderTransformer.this.type
- def setNReturnSequences(beamNum: Int): StarCoderTransformer.this.type
- Definition Classes
- HasGeneratorProperties
- def setNoRepeatNgramSize(value: Int): StarCoderTransformer.this.type
- Definition Classes
- HasGeneratorProperties
- final def setOutputCol(value: String): StarCoderTransformer.this.type
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
- HasOutputAnnotationCol
- def setParent(parent: Estimator[StarCoderTransformer]): StarCoderTransformer
- Definition Classes
- Model
- def setRandomSeed(value: Int): StarCoderTransformer.this.type
- def setRandomSeed(value: Long): StarCoderTransformer.this.type
- Definition Classes
- HasGeneratorProperties
- def setRepetitionPenalty(value: Double): StarCoderTransformer.this.type
- Definition Classes
- HasGeneratorProperties
- def setStopTokenIds(value: Array[Int]): StarCoderTransformer.this.type
- Definition Classes
- HasGeneratorProperties
- def setTask(value: String): StarCoderTransformer.this.type
- Definition Classes
- HasGeneratorProperties
- def setTemperature(value: Double): StarCoderTransformer.this.type
- Definition Classes
- HasGeneratorProperties
- def setTopK(value: Int): StarCoderTransformer.this.type
- Definition Classes
- HasGeneratorProperties
- def setTopP(value: Double): StarCoderTransformer.this.type
- Definition Classes
- HasGeneratorProperties
- def setVocabulary(value: Map[String, Int]): StarCoderTransformer.this.type
- val stopTokenIds: IntArrayParam
Stop tokens to terminate the generation
Stop tokens to terminate the generation
- Definition Classes
- HasGeneratorProperties
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- val task: Param[String]
Set transformer task, e.g.
Set transformer task, e.g.
"summarize:"(Default:"").- Definition Classes
- HasGeneratorProperties
- val temperature: DoubleParam
The value used to module the next token probabilities (Default:
1.0)The value used to module the next token probabilities (Default:
1.0)- Definition Classes
- HasGeneratorProperties
- def toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
- val topK: IntParam
The number of highest probability vocabulary tokens to keep for top-k-filtering (Default:
50)The number of highest probability vocabulary tokens to keep for top-k-filtering (Default:
50)- Definition Classes
- HasGeneratorProperties
- val topP: DoubleParam
If set to float <
1.0, only the most probable tokens with probabilities that add up totopPor higher are kept for generation (Default:1.0)If set to float <
1.0, only the most probable tokens with probabilities that add up totopPor higher are kept for generation (Default:1.0)- Definition Classes
- HasGeneratorProperties
- final def transform(dataset: Dataset[_]): DataFrame
Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content
Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content
- dataset
Dataset[Row]
- Definition Classes
- AnnotatorModel → Transformer
- def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since("2.0.0")
- def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
- Definition Classes
- Transformer
- Annotations
- @varargs() @Since("2.0.0")
- final def transformSchema(schema: StructType): StructType
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
- RawAnnotator → PipelineStage
- def transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
- val uid: String
- Definition Classes
- StarCoderTransformer → Identifiable
- def validate(schema: StructType): Boolean
takes a Dataset and checks to see if all the required annotation types are present.
takes a Dataset and checks to see if all the required annotation types are present.
- schema
to be validated
- returns
True if all the required types are present, else false
- Attributes
- protected
- Definition Classes
- RawAnnotator
- val vocabulary: MapFeature[String, Int]
Vocabulary used to encode the words to ids with bpeTokenizer.encode
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- def wrapColumnMetadata(col: Column): Column
- Attributes
- protected
- Definition Classes
- RawAnnotator
- def write: MLWriter
- Definition Classes
- ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
- def writeOnnxModel(path: String, spark: SparkSession, onnxWrapper: OnnxWrapper, suffix: String, fileName: String): Unit
- Definition Classes
- WriteOnnxModel
- def writeOnnxModels(path: String, spark: SparkSession, onnxWrappersWithNames: Seq[(OnnxWrapper, String)], suffix: String): Unit
- Definition Classes
- WriteOnnxModel
- def writeOpenvinoModel(path: String, spark: SparkSession, openvinoWrapper: OpenvinoWrapper, suffix: String, fileName: String): Unit
- Definition Classes
- WriteOpenvinoModel
- def writeOpenvinoModels(path: String, spark: SparkSession, ovWrappersWithNames: Seq[(OpenvinoWrapper, String)], suffix: String): Unit
- Definition Classes
- WriteOpenvinoModel
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
(Since version 9)
Inherited from HasEngine
Inherited from HasGeneratorProperties
Inherited from WriteOpenvinoModel
Inherited from WriteOnnxModel
Inherited from HasBatchedAnnotate[StarCoderTransformer]
Inherited from AnnotatorModel[StarCoderTransformer]
Inherited from CanBeLazy
Inherited from RawAnnotator[StarCoderTransformer]
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from HasOutputAnnotatorType
Inherited from ParamsAndFeaturesWritable
Inherited from HasFeatures
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from Model[StarCoderTransformer]
Inherited from Transformer
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.