class ClassifierDatasetEncoder extends Serializable
- Alphabetic
- By Inheritance
- ClassifierDatasetEncoder
- Serializable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
- new ClassifierDatasetEncoder(params: ClassifierDatasetEncoderParams)
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def calculateEmbeddingsDim(dataset: DataFrame): Int
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @HotSpotIntrinsicCandidate() @native()
- def collectTrainingInstances(dataset: DataFrame, labelCol: String): Array[Array[(String, Array[Float])]]
Converts DataFrame to Array of Arrays of Labels (string)
Converts DataFrame to Array of Arrays of Labels (string)
- dataset
Input DataFrame with embeddings and labels
- returns
Array of Array of Map(String, Array(Float))
- def collectTrainingInstancesMultiLabel(dataset: DataFrame, labelCol: String): Array[Array[(Array[String], Array[Float])]]
Converts DataFrame to labels and embeddings
Converts DataFrame to labels and embeddings
- dataset
Input DataFrame with embeddings and labels
- returns
Array of Array of Map(Array(String), Array(Float))
- def decodeOutputData(tagIds: Array[Array[Float]]): Array[Array[(String, Float)]]
Converts Tag Identifiers to Tag Names
Converts Tag Identifiers to Tag Names
- tagIds
Tag Ids encoded for Tensorflow Model.
- returns
Tag names
- def encodeTags(labels: Array[String]): Array[Array[Int]]
- def encodeTagsMultiLabel(labels: Array[Array[String]]): Array[Array[Float]]
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def extractLabels(dataset: Array[Array[(String, Array[Float])]]): Array[String]
Converts DataFrame to Array of Arrays of Labels (string)
Converts DataFrame to Array of Arrays of Labels (string)
- dataset
Input DataFrame with labels
- returns
Array of Array of String
- def extractLabelsMultiLabel(dataset: Array[Array[(Array[String], Array[Float])]]): Array[Array[String]]
Converts DataFrame to Array of Arrays of Labels (string)
Converts DataFrame to Array of Arrays of Labels (string)
- dataset
Input DataFrame with labels
- returns
Array of Array of String
- def extractSentenceEmbeddings(docs: Seq[(Int, Seq[Annotation])]): Array[Array[Float]]
Converts DataFrame to Array of Arrays of Embeddings
Converts DataFrame to Array of Arrays of Embeddings
- docs
Input DataFrame with sentence_embeddings
- returns
Array of Array of Float
- def extractSentenceEmbeddings(dataset: Array[Array[(String, Array[Float])]]): Array[Array[Float]]
Converts DataFrame to Array of Arrays of Embeddings
Converts DataFrame to Array of Arrays of Embeddings
- dataset
Input DataFrame with sentence_embeddings
- returns
Array of Array of Float
- def extractSentenceEmbeddingsMultiLabel(docs: Seq[(Int, Seq[Annotation])]): Array[Array[Array[Float]]]
Converts DataFrame to Array of arrays of arrays of arrays of Embeddings The difference in this function is to create a sequence in case of multiple sentences in a document Used in MultiClassifierDL
Converts DataFrame to Array of arrays of arrays of arrays of Embeddings The difference in this function is to create a sequence in case of multiple sentences in a document Used in MultiClassifierDL
- docs
Input DataFrame with sentence_embeddings
- returns
Array of Arrays of Arrays of Floats
- def extractSentenceEmbeddingsMultiLabel(dataset: Array[Array[(Array[String], Array[Float])]]): Array[Array[Array[Float]]]
Converts DataFrame to Array of arrays of arrays of arrays of Embeddings The difference in this function is to create a sequence in case of multiple sentences in a document Used in MultiClassifierDL
Converts DataFrame to Array of arrays of arrays of arrays of Embeddings The difference in this function is to create a sequence in case of multiple sentences in a document Used in MultiClassifierDL
- dataset
Input DataFrame with sentence_embeddings
- returns
Array of Arrays of Arrays of Floats
- def extractSentenceEmbeddingsMultiLabelPredict(docs: Seq[(Int, Seq[Annotation])]): Array[Array[Array[Float]]]
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- val params: ClassifierDatasetEncoderParams
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- val tags: Array[String]
- val tags2Id: Map[String, Int]
- def toString(): String
- Definition Classes
- AnyRef → Any
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
(Since version 9)