class TextMatcher extends AnnotatorApproach[TextMatcherModel] with ParamsAndFeaturesWritable
Annotator to match exact phrases (by token) provided in a file against a Document.
A text file of predefined phrases must be provided with setEntities. The text file can als
be set directly as an ExternalResource.
For extended examples of usage, see the Examples and the TextMatcherTestSpec.
Example
In this example, the entities file is of the form
... dolore magna aliqua lorem ipsum dolor. sit laborum ...
where each line represents an entity phrase to be extracted.
import spark.implicits._ import com.johnsnowlabs.nlp.DocumentAssembler import com.johnsnowlabs.nlp.annotator.Tokenizer import com.johnsnowlabs.nlp.annotator.TextMatcher import com.johnsnowlabs.nlp.util.io.ReadAs import org.apache.spark.ml.Pipeline val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val tokenizer = new Tokenizer() .setInputCols("document") .setOutputCol("token") val data = Seq("Hello dolore magna aliqua. Lorem ipsum dolor. sit in laborum").toDF("text") val entityExtractor = new TextMatcher() .setInputCols("document", "token") .setEntities("src/test/resources/entity-extractor/test-phrases.txt", ReadAs.TEXT) .setOutputCol("entity") .setCaseSensitive(false) .setTokenizer(tokenizer.fit(data)) val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, entityExtractor)) val results = pipeline.fit(data).transform(data) results.selectExpr("explode(entity) as result").show(false) +------------------------------------------------------------------------------------------+ |result | +------------------------------------------------------------------------------------------+ |[chunk, 6, 24, dolore magna aliqua, [entity -> entity, sentence -> 0, chunk -> 0], []] | |[chunk, 27, 48, Lorem ipsum dolor. sit, [entity -> entity, sentence -> 0, chunk -> 1], []]| |[chunk, 53, 59, laborum, [entity -> entity, sentence -> 0, chunk -> 2], []] | +------------------------------------------------------------------------------------------+
- See also
BigTextMatcher to match large amounts of text
- Grouped
- Alphabetic
- By Inheritance
- TextMatcher
- ParamsAndFeaturesWritable
- HasFeatures
- AnnotatorApproach
- CanBeLazy
- DefaultParamsWritable
- MLWritable
- HasOutputAnnotatorType
- HasOutputAnnotationCol
- HasInputAnnotationCols
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
Type Members
- type AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def $[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
- def $$[T](feature: StructFeature[T]): T
- Attributes
- protected
- Definition Classes
- HasFeatures
- def $$[K, V](feature: MapFeature[K, V]): Map[K, V]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def $$[T](feature: SetFeature[T]): Set[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def $$[T](feature: ArrayFeature[T]): Array[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def _fit(dataset: Dataset[_], recursiveStages: Option[PipelineModel]): TextMatcherModel
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def beforeTraining(spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
- val buildFromTokens: BooleanParam
Whether the TextMatcher should take the CHUNK from TOKEN or not (Default:
false) - val caseSensitive: BooleanParam
Whether to match regardless of case (Default:
true) - final def checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def clear(param: Param[_]): TextMatcher.this.type
- Definition Classes
- Params
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @HotSpotIntrinsicCandidate() @native()
- final def copy(extra: ParamMap): Estimator[TextMatcherModel]
- Definition Classes
- AnnotatorApproach → Estimator → PipelineStage → Params
- def copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
- final def defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
- val description: String
Extracts entities from target dataset given in a text file
Extracts entities from target dataset given in a text file
- Definition Classes
- TextMatcher → AnnotatorApproach
- val entities: ExternalResourceParam
External resource for the entities, e.g.
External resource for the entities, e.g. a text file where each line is the string of an entity
- val entityValue: Param[String]
Value for the entity metadata field (Default:
"entity") - final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def explainParam(param: Param[_]): String
- Definition Classes
- Params
- def explainParams(): String
- Definition Classes
- Params
- final def extractParamMap(): ParamMap
- Definition Classes
- Params
- final def extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
- val features: ArrayBuffer[Feature[_, _, _]]
- Definition Classes
- HasFeatures
- final def fit(dataset: Dataset[_]): TextMatcherModel
- Definition Classes
- AnnotatorApproach → Estimator
- def fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[TextMatcherModel]
- Definition Classes
- Estimator
- Annotations
- @Since("2.0.0")
- def fit(dataset: Dataset[_], paramMap: ParamMap): TextMatcherModel
- Definition Classes
- Estimator
- Annotations
- @Since("2.0.0")
- def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): TextMatcherModel
- Definition Classes
- Estimator
- Annotations
- @varargs() @Since("2.0.0")
- def get[T](feature: StructFeature[T]): Option[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def get[T](feature: SetFeature[T]): Option[Set[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def get[T](feature: ArrayFeature[T]): Option[Array[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getBuildFromTokens: Boolean
Getter for buildFromTokens param
- def getCaseSensitive: Boolean
Whether to match regardless of case (Default:
true) - final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- final def getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getEntityValue: String
Getter for Value for the entity metadata field
- def getInputCols: Array[String]
- returns
input annotations columns currently used
- Definition Classes
- HasInputAnnotationCols
- def getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
- def getMergeOverlapping: Boolean
Whether to merge overlapping matched chunks (Default:
false) - final def getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
- final def getOutputCol: String
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
- HasOutputAnnotationCol
- def getParam(paramName: String): Param[Any]
- Definition Classes
- Params
- def getTokenizer: TokenizerModel
The Tokenizer to perform tokenization with
- final def hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
- def hasParam(paramName: String): Boolean
- Definition Classes
- Params
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- def initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
- val inputAnnotatorTypes: Array[String]
Output annotator type : DOCUMENT, TOKEN
Output annotator type : DOCUMENT, TOKEN
- Definition Classes
- TextMatcher → HasInputAnnotationCols
- final val inputCols: StringArrayParam
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- final def isSet(param: Param[_]): Boolean
- Definition Classes
- Params
- def isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- val lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
- def log: Logger
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logName: String
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- val mergeOverlapping: BooleanParam
Whether to merge overlapping matched chunks (Default:
false) - def msgHelper(schema: StructType): String
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- def onTrained(model: TextMatcherModel, spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
- def onWrite(path: String, spark: SparkSession): Unit
- Attributes
- protected
- Definition Classes
- ParamsAndFeaturesWritable
- val optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
- val outputAnnotatorType: AnnotatorType
Output annotator type : CHUNK
Output annotator type : CHUNK
- Definition Classes
- TextMatcher → HasOutputAnnotatorType
- final val outputCol: Param[String]
- Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
- lazy val params: Array[Param[_]]
- Definition Classes
- Params
- def save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @throws("If the input path already exists but overwrite is not enabled.") @Since("1.6.0")
- def set[T](feature: StructFeature[T], value: T): TextMatcher.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def set[K, V](feature: MapFeature[K, V], value: Map[K, V]): TextMatcher.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def set[T](feature: SetFeature[T], value: Set[T]): TextMatcher.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def set[T](feature: ArrayFeature[T], value: Array[T]): TextMatcher.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def set(paramPair: ParamPair[_]): TextMatcher.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def set(param: String, value: Any): TextMatcher.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def set[T](param: Param[T], value: T): TextMatcher.this.type
- Definition Classes
- Params
- def setBuildFromTokens(v: Boolean): TextMatcher.this.type
Setter for buildFromTokens param
- def setCaseSensitive(v: Boolean): TextMatcher.this.type
Whether to match regardless of case (Default:
true) - def setDefault[T](feature: StructFeature[T], value: () => T): TextMatcher.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def setDefault[K, V](feature: MapFeature[K, V], value: () => Map[K, V]): TextMatcher.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def setDefault[T](feature: SetFeature[T], value: () => Set[T]): TextMatcher.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def setDefault[T](feature: ArrayFeature[T], value: () => Array[T]): TextMatcher.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def setDefault(paramPairs: ParamPair[_]*): TextMatcher.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def setDefault[T](param: Param[T], value: T): TextMatcher.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
- def setEntities(path: String, readAs: Format, options: Map[String, String] = Map("format" -> "text")): TextMatcher.this.type
Provides a file with phrases to match.
Provides a file with phrases to match. Default: Looks up path in configuration.
- path
a path to a file that contains the entities in the specified format.
- readAs
the format of the file, can be one of {ReadAs.TEXT, ReadAs.SPARK}. Defaults to ReadAs.TEXT.
- options
a map of additional parameters. Defaults to
Map("format" -> "text").- returns
this
- def setEntities(value: ExternalResource): TextMatcher.this.type
Provides a file with phrases to match (Default: Looks up path in configuration)
- def setEntityValue(v: String): TextMatcher.this.type
Setter for Value for the entity metadata field
- final def setInputCols(value: String*): TextMatcher.this.type
- Definition Classes
- HasInputAnnotationCols
- def setInputCols(value: Array[String]): TextMatcher.this.type
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
- HasInputAnnotationCols
- def setLazyAnnotator(value: Boolean): TextMatcher.this.type
- Definition Classes
- CanBeLazy
- def setMergeOverlapping(v: Boolean): TextMatcher.this.type
Whether to merge overlapping matched chunks (Default:
false) - final def setOutputCol(value: String): TextMatcher.this.type
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
- HasOutputAnnotationCol
- def setTokenizer(tokenizer: TokenizerModel): TextMatcher.this.type
The Tokenizer to perform tokenization with
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
- val tokenizer: StructFeature[TokenizerModel]
The Tokenizer to perform tokenization with
- def train(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): TextMatcherModel
- Definition Classes
- TextMatcher → AnnotatorApproach
- final def transformSchema(schema: StructType): StructType
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
- AnnotatorApproach → PipelineStage
- def transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
- val uid: String
- Definition Classes
- TextMatcher → Identifiable
- def validate(schema: StructType): Boolean
takes a Dataset and checks to see if all the required annotation types are present.
takes a Dataset and checks to see if all the required annotation types are present.
- schema
to be validated
- returns
True if all the required types are present, else false
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- def write: MLWriter
- Definition Classes
- ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
(Since version 9)
Inherited from ParamsAndFeaturesWritable
Inherited from HasFeatures
Inherited from AnnotatorApproach[TextMatcherModel]
Inherited from CanBeLazy
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from HasOutputAnnotatorType
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from Estimator[TextMatcherModel]
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Annotator types
Required input and expected output annotator types
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.