class MPNetEmbeddings extends AnnotatorModel[MPNetEmbeddings] with HasBatchedAnnotate[MPNetEmbeddings] with WriteTensorflowModel with WriteOnnxModel with WriteOpenvinoModel with HasEmbeddingsProperties with HasStorageRef with HasCaseSensitiveProperties with HasEngine
Sentence embeddings using MPNet.
The MPNet model was proposed in MPNet: Masked and Permuted Pre-training for Language Understanding by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu. MPNet adopts a novel pre-training method, named masked and permuted language modeling, to inherit the advantages of masked language modeling and permuted language modeling for natural language understanding.
Note that this annotator is only supported for Spark Versions 3.4 and up.
Pretrained models can be loaded with pretrained of the companion object:
val embeddings = MPNetEmbeddings.pretrained() .setInputCols("document") .setOutputCol("mpnet_embeddings")
The default model is "all_mpnet_base_v2", if no name is provided.
For available pretrained models please see the Models Hub.
For extended examples of usage, see MPNetEmbeddingsTestSpec.
Sources :
MPNet: Masked and Permuted Pre-training for Language Understanding
Paper abstract
BERT adopts masked language modeling (MLM) for pre-training and is one of the most successful pre-training models. Since BERT neglects dependency among predicted tokens, XLNet introduces permuted language modeling (PLM) for pre-training to address this problem. However, XLNet does not leverage the full position information of a sentence and thus suffers from position discrepancy between pre-training and fine-tuning. In this paper, we propose MPNet, a novel pre-training method that inherits the advantages of BERT and XLNet and avoids their limitations. MPNet leverages the dependency among predicted tokens through permuted language modeling (vs. MLM in BERT), and takes auxiliary position information as input to make the model see a full sentence and thus reducing the position discrepancy (vs. PLM in XLNet). We pre-train MPNet on a large-scale dataset (over 160GB text corpora) and fine-tune on a variety of down-streaming tasks (GLUE, SQuAD, etc). Experimental results show that MPNet outperforms MLM and PLM by a large margin, and achieves better results on these tasks compared with previous state-of-the-art pre-trained methods (e.g., BERT, XLNet, RoBERTa) under the same model setting.
Example
import spark.implicits._ import com.johnsnowlabs.nlp.base.DocumentAssembler import com.johnsnowlabs.nlp.annotators.Tokenizer import com.johnsnowlabs.nlp.embeddings.MPNetEmbeddings import com.johnsnowlabs.nlp.EmbeddingsFinisher import org.apache.spark.ml.Pipeline val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val embeddings = MPNetEmbeddings.pretrained("all_mpnet_base_v2", "en") .setInputCols("document") .setOutputCol("mpnet_embeddings") val embeddingsFinisher = new EmbeddingsFinisher() .setInputCols("mpnet_embeddings") .setOutputCols("finished_embeddings") .setOutputAsVector(true) val pipeline = new Pipeline().setStages(Array( documentAssembler, embeddings, embeddingsFinisher )) val data = Seq("This is an example sentence", "Each sentence is converted").toDF("text") val result = pipeline.fit(data).transform(data) result.selectExpr("explode(finished_embeddings) as result").show(1, 80) +--------------------------------------------------------------------------------+ | result| +--------------------------------------------------------------------------------+ |[[0.022502584, -0.078291744, -0.023030775, -0.0051000593, -0.080340415, 0.039...| |[[0.041702367, 0.0010974605, -0.015534201, 0.07092203, -0.0017729357, 0.04661...| +--------------------------------------------------------------------------------+
- See also
Annotators Main Page for a list of transformer based embeddings
- Grouped
- Alphabetic
- By Inheritance
- MPNetEmbeddings
- HasEngine
- HasCaseSensitiveProperties
- HasStorageRef
- HasEmbeddingsProperties
- HasProtectedParams
- WriteOpenvinoModel
- WriteOnnxModel
- WriteTensorflowModel
- HasBatchedAnnotate
- AnnotatorModel
- CanBeLazy
- RawAnnotator
- HasOutputAnnotationCol
- HasInputAnnotationCols
- HasOutputAnnotatorType
- ParamsAndFeaturesWritable
- HasFeatures
- DefaultParamsWritable
- MLWritable
- Model
- Transformer
- PipelineStage
- Logging
- Params
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
Type Members
- implicit class ProtectedParam[T] extends Param[T]
- Definition Classes
- HasProtectedParams
- type AnnotationContent = Seq[Row]
internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI
internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI
- Attributes
- protected
- Definition Classes
- AnnotatorModel
- type AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def $[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
- def $$[T](feature: StructFeature[T]): T
- Attributes
- protected
- Definition Classes
- HasFeatures
- def $$[K, V](feature: MapFeature[K, V]): Map[K, V]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def $$[T](feature: SetFeature[T]): Set[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def $$[T](feature: ArrayFeature[T]): Array[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def _transform(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): DataFrame
- Attributes
- protected
- Definition Classes
- AnnotatorModel
- def afterAnnotate(dataset: DataFrame): DataFrame
- Attributes
- protected
- Definition Classes
- MPNetEmbeddings → AnnotatorModel
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def batchAnnotate(batchedAnnotations: Seq[Array[Annotation]]): Seq[Seq[Annotation]]
takes a document and annotations and produces new annotations of this annotator's annotation type
takes a document and annotations and produces new annotations of this annotator's annotation type
- batchedAnnotations
Annotations that correspond to inputAnnotationCols generated by previous annotators if any
- returns
any number of annotations processed for every input annotation. Not necessary one to one relationship
- Definition Classes
- MPNetEmbeddings → HasBatchedAnnotate
- def batchProcess(rows: Iterator[_]): Iterator[Row]
- Definition Classes
- HasBatchedAnnotate
- val batchSize: IntParam
Size of every batch (Default depends on model).
Size of every batch (Default depends on model).
- Definition Classes
- HasBatchedAnnotate
- def beforeAnnotate(dataset: Dataset[_]): Dataset[_]
- Attributes
- protected
- Definition Classes
- AnnotatorModel
- val caseSensitive: BooleanParam
Whether to ignore case in index lookups (Default depends on model)
Whether to ignore case in index lookups (Default depends on model)
- Definition Classes
- HasCaseSensitiveProperties
- final def checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def clear(param: Param[_]): MPNetEmbeddings.this.type
- Definition Classes
- Params
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @HotSpotIntrinsicCandidate() @native()
- val configProtoBytes: IntArrayParam
ConfigProto from tensorflow, serialized into byte array.
ConfigProto from tensorflow, serialized into byte array. Get with
config_proto.SerializeToString() - def copy(extra: ParamMap): MPNetEmbeddings
requirement for annotators copies
requirement for annotators copies
- Definition Classes
- RawAnnotator → Model → Transformer → PipelineStage → Params
- def copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
- def createDatabaseConnection(database: Name): RocksDBConnection
- Definition Classes
- HasStorageRef
- final def defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
- val dimension: ProtectedParam[Int]
Number of embedding dimensions (Default depends on model)
Number of embedding dimensions (Default depends on model)
- Definition Classes
- HasEmbeddingsProperties
- val engine: Param[String]
This param is set internally once via loadSavedModel.
This param is set internally once via loadSavedModel. That's why there is no setter
- Definition Classes
- HasEngine
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def explainParam(param: Param[_]): String
- Definition Classes
- Params
- def explainParams(): String
- Definition Classes
- Params
- def extraValidate(structType: StructType): Boolean
- Attributes
- protected
- Definition Classes
- RawAnnotator
- def extraValidateMsg: String
Override for additional custom schema checks
Override for additional custom schema checks
- Attributes
- protected
- Definition Classes
- RawAnnotator
- final def extractParamMap(): ParamMap
- Definition Classes
- Params
- final def extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
- val features: ArrayBuffer[Feature[_, _, _]]
- Definition Classes
- HasFeatures
- def get[T](feature: StructFeature[T]): Option[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def get[T](feature: SetFeature[T]): Option[Set[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def get[T](feature: ArrayFeature[T]): Option[Array[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getBatchSize: Int
Size of every batch.
Size of every batch.
- Definition Classes
- HasBatchedAnnotate
- def getCaseSensitive: Boolean
- Definition Classes
- HasCaseSensitiveProperties
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- def getConfigProtoBytes: Option[Array[Byte]]
- final def getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getDimension: Int
- Definition Classes
- HasEmbeddingsProperties
- def getEngine: String
- Definition Classes
- HasEngine
- def getInputCols: Array[String]
- returns
input annotations columns currently used
- Definition Classes
- HasInputAnnotationCols
- def getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
- def getMaxSentenceLength: Int
- def getModelIfNotSet: MPNet
- final def getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
- final def getOutputCol: String
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
- HasOutputAnnotationCol
- def getParam(paramName: String): Param[Any]
- Definition Classes
- Params
- def getSignatures: Option[Map[String, String]]
- def getStorageRef: String
- Definition Classes
- HasStorageRef
- final def hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
- def hasParam(paramName: String): Boolean
- Definition Classes
- Params
- def hasParent: Boolean
- Definition Classes
- Model
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- def initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
- val inputAnnotatorTypes: Array[String]
Annotator reference id.
Annotator reference id. Used to identify elements in metadata or to refer to this annotator type
- Definition Classes
- MPNetEmbeddings → HasInputAnnotationCols
- final val inputCols: StringArrayParam
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- final def isSet(param: Param[_]): Boolean
- Definition Classes
- Params
- def isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- val lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
- def log: Logger
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logName: String
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- val maxSentenceLength: IntParam
Max sentence length to process (Default:
128) - def msgHelper(schema: StructType): String
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- def onWrite(path: String, spark: SparkSession): Unit
- Definition Classes
- MPNetEmbeddings → ParamsAndFeaturesWritable
- val optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
- val outputAnnotatorType: AnnotatorType
- Definition Classes
- MPNetEmbeddings → HasOutputAnnotatorType
- final val outputCol: Param[String]
- Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
- lazy val params: Array[Param[_]]
- Definition Classes
- Params
- var parent: Estimator[MPNetEmbeddings]
- Definition Classes
- Model
- def save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @throws("If the input path already exists but overwrite is not enabled.") @Since("1.6.0")
- def sentenceEndTokenId: Int
- def sentenceStartTokenId: Int
- def set[T](param: ProtectedParam[T], value: T): MPNetEmbeddings.this.type
Sets the value for a protected Param.
Sets the value for a protected Param.
If the parameter was already set, it will not be set again. Default values do not count as a set value and can be overridden.
- T
Type of the parameter
- param
Protected parameter to set
- value
Value for the parameter
- returns
This object
- Definition Classes
- HasProtectedParams
- def set[T](feature: StructFeature[T], value: T): MPNetEmbeddings.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def set[K, V](feature: MapFeature[K, V], value: Map[K, V]): MPNetEmbeddings.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def set[T](feature: SetFeature[T], value: Set[T]): MPNetEmbeddings.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def set[T](feature: ArrayFeature[T], value: Array[T]): MPNetEmbeddings.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def set(paramPair: ParamPair[_]): MPNetEmbeddings.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def set(param: String, value: Any): MPNetEmbeddings.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def set[T](param: Param[T], value: T): MPNetEmbeddings.this.type
- Definition Classes
- Params
- def setBatchSize(size: Int): MPNetEmbeddings.this.type
Size of every batch.
Size of every batch.
- Definition Classes
- HasBatchedAnnotate
- def setCaseSensitive(value: Boolean): MPNetEmbeddings.this.type
Whether to lowercase tokens or not
Whether to lowercase tokens or not
- Definition Classes
- MPNetEmbeddings → HasCaseSensitiveProperties
- def setConfigProtoBytes(bytes: Array[Int]): MPNetEmbeddings.this.type
- def setDefault[T](feature: StructFeature[T], value: () => T): MPNetEmbeddings.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def setDefault[K, V](feature: MapFeature[K, V], value: () => Map[K, V]): MPNetEmbeddings.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def setDefault[T](feature: SetFeature[T], value: () => Set[T]): MPNetEmbeddings.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def setDefault[T](feature: ArrayFeature[T], value: () => Array[T]): MPNetEmbeddings.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def setDefault(paramPairs: ParamPair[_]*): MPNetEmbeddings.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def setDefault[T](param: Param[T], value: T): MPNetEmbeddings.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
- def setDimension(value: Int): MPNetEmbeddings.this.type
Set Embeddings dimensions for the BERT model Only possible to set this when the first time is saved dimension is not changeable, it comes from BERT config file
Set Embeddings dimensions for the BERT model Only possible to set this when the first time is saved dimension is not changeable, it comes from BERT config file
- Definition Classes
- MPNetEmbeddings → HasEmbeddingsProperties
- final def setInputCols(value: String*): MPNetEmbeddings.this.type
- Definition Classes
- HasInputAnnotationCols
- def setInputCols(value: Array[String]): MPNetEmbeddings.this.type
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
- HasInputAnnotationCols
- def setLazyAnnotator(value: Boolean): MPNetEmbeddings.this.type
- Definition Classes
- CanBeLazy
- def setMaxSentenceLength(value: Int): MPNetEmbeddings.this.type
- def setModelIfNotSet(spark: SparkSession, tensorflowWrapper: Option[TensorflowWrapper], onnxWrapper: Option[OnnxWrapper], openvinoWrapper: Option[OpenvinoWrapper]): MPNetEmbeddings
- final def setOutputCol(value: String): MPNetEmbeddings.this.type
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
- HasOutputAnnotationCol
- def setParent(parent: Estimator[MPNetEmbeddings]): MPNetEmbeddings
- Definition Classes
- Model
- def setSignatures(value: Map[String, String]): MPNetEmbeddings.this.type
- def setStorageRef(value: String): MPNetEmbeddings.this.type
- Definition Classes
- HasStorageRef
- def setVocabulary(value: Map[String, Int]): MPNetEmbeddings.this.type
- val signatures: MapFeature[String, String]
It contains TF model signatures for the laded saved model
- val storageRef: Param[String]
Unique identifier for storage (Default:
this.uid)Unique identifier for storage (Default:
this.uid)- Definition Classes
- HasStorageRef
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
- def tokenize(sentences: Seq[Annotation]): Seq[WordpieceTokenizedSentence]
- final def transform(dataset: Dataset[_]): DataFrame
Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content
Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content
- dataset
Dataset[Row]
- Definition Classes
- AnnotatorModel → Transformer
- def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since("2.0.0")
- def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
- Definition Classes
- Transformer
- Annotations
- @varargs() @Since("2.0.0")
- final def transformSchema(schema: StructType): StructType
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
- RawAnnotator → PipelineStage
- def transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
- val uid: String
- Definition Classes
- MPNetEmbeddings → Identifiable
- def validate(schema: StructType): Boolean
takes a Dataset and checks to see if all the required annotation types are present.
takes a Dataset and checks to see if all the required annotation types are present.
- schema
to be validated
- returns
True if all the required types are present, else false
- Attributes
- protected
- Definition Classes
- RawAnnotator
- def validateStorageRef(dataset: Dataset[_], inputCols: Array[String], annotatorType: String): Unit
- Definition Classes
- HasStorageRef
- val vocabulary: MapFeature[String, Int]
Vocabulary used to encode the words to ids with WordPieceEncoder
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- def wrapColumnMetadata(col: Column): Column
- Attributes
- protected
- Definition Classes
- RawAnnotator
- def wrapEmbeddingsMetadata(col: Column, embeddingsDim: Int, embeddingsRef: Option[String] = None): Column
- Attributes
- protected
- Definition Classes
- HasEmbeddingsProperties
- def wrapSentenceEmbeddingsMetadata(col: Column, embeddingsDim: Int, embeddingsRef: Option[String] = None): Column
- Attributes
- protected
- Definition Classes
- HasEmbeddingsProperties
- def write: MLWriter
- Definition Classes
- ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
- def writeOnnxModel(path: String, spark: SparkSession, onnxWrapper: OnnxWrapper, suffix: String, fileName: String): Unit
- Definition Classes
- WriteOnnxModel
- def writeOnnxModels(path: String, spark: SparkSession, onnxWrappersWithNames: Seq[(OnnxWrapper, String)], suffix: String): Unit
- Definition Classes
- WriteOnnxModel
- def writeOpenvinoModel(path: String, spark: SparkSession, openvinoWrapper: OpenvinoWrapper, suffix: String, fileName: String): Unit
- Definition Classes
- WriteOpenvinoModel
- def writeOpenvinoModels(path: String, spark: SparkSession, ovWrappersWithNames: Seq[(OpenvinoWrapper, String)], suffix: String): Unit
- Definition Classes
- WriteOpenvinoModel
- def writeTensorflowHub(path: String, tfPath: String, spark: SparkSession, suffix: String = "_use"): Unit
- Definition Classes
- WriteTensorflowModel
- def writeTensorflowModel(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None): Unit
- Definition Classes
- WriteTensorflowModel
- def writeTensorflowModelV2(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None, savedSignatures: Option[Map[String, String]] = None): Unit
- Definition Classes
- WriteTensorflowModel
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
(Since version 9)
Inherited from HasEngine
Inherited from HasCaseSensitiveProperties
Inherited from HasStorageRef
Inherited from HasEmbeddingsProperties
Inherited from HasProtectedParams
Inherited from WriteOpenvinoModel
Inherited from WriteOnnxModel
Inherited from WriteTensorflowModel
Inherited from HasBatchedAnnotate[MPNetEmbeddings]
Inherited from AnnotatorModel[MPNetEmbeddings]
Inherited from CanBeLazy
Inherited from RawAnnotator[MPNetEmbeddings]
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from HasOutputAnnotatorType
Inherited from ParamsAndFeaturesWritable
Inherited from HasFeatures
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from Model[MPNetEmbeddings]
Inherited from Transformer
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.