sttp.openai.requests.finetuning
Members list
Type members
Classlikes
Value parameters
- hyperparameters
-
The hyperparameters used for the fine-tuning job.
Attributes
- Companion
- object
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Objecttrait Matchableclass AnyShow all
Value parameters
- code
-
A machine-readable error code.
- message
-
A human-readable error message.
- param
-
The parameter that was invalid, usually training_file or validation_file. This field will be null if the failure was not parameter-specific.
Attributes
- Companion
- object
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Objecttrait Matchableclass AnyShow all
The fine_tuning.job.checkpoint object represents a model checkpoint for a fine-tuning job that is ready to use.
The fine_tuning.job.checkpoint object represents a model checkpoint for a fine-tuning job that is ready to use.
Value parameters
- `object`
-
The object type, which is always "fine_tuning.job.checkpoint".
- createdAt
-
The Unix timestamp (in seconds) for when the checkpoint was created.
- fineTunedModelCheckpoint
-
The name of the fine-tuned checkpoint model that is created.
- fineTuningJobId
-
The name of the fine-tuning job that this checkpoint was created from.
- id
-
The checkpoint identifier, which can be referenced in the API endpoints.
- metrics
-
Metrics at the step number during the fine-tuning job.
- stepNumber
-
The step number that the checkpoint was created at.
Attributes
- Companion
- object
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Objecttrait Matchableclass AnyShow all
Attributes
- Companion
- class
- Supertypes
-
trait Producttrait Mirrorclass Objecttrait Matchableclass Any
- Self type
Fine-tuning job event object
Fine-tuning job event object
Value parameters
- `object`
-
The object type, which is always "fine_tuning.job.event".
- `type`
-
The type of event.
- createdAt
-
The Unix timestamp (in seconds) for when the fine-tuning job was created.
- data
-
The data associated with the event.
- id
-
The object identifier.
- level
-
The log level of the event.
- message
-
The message of the event.
Attributes
- Companion
- object
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Objecttrait Matchableclass AnyShow all
Attributes
- Companion
- class
- Supertypes
-
trait Producttrait Mirrorclass Objecttrait Matchableclass Any
- Self type
Value parameters
- integrations
-
A list of integrations to enable for your fine-tuning job.
- method
-
The method used for fine-tuning.
- model
-
The name of the model to fine-tune. You can select one of the supported models https://platform.openai.com/docs/guides/fine-tuning#which-models-can-be-fine-tuned.
- seed
-
The seed controls the reproducibility of the job. Passing in the same seed and job parameters should produce the same results, but may differ in rare cases. If a seed is not specified, one will be generated for you.
- suffix
-
A string of up to 64 characters that will be added to your fine-tuned model name. For example, a suffix of "custom-model-name" would produce a model name like ft:gpt-4o-mini:openai:custom-model-name:7p4lURel.
- trainingFile
-
The ID of an uploaded file that contains training data. See upload file for how to upload a file. Your dataset must be formatted as a JSONL file. Additionally, you must upload your file with the purpose fine-tune. The contents of the file should differ depending on if the model uses the chat, completions format, or if the fine-tuning method uses the preference format. See the fine-tuning guide for more details.
- validationFile
-
The ID of an uploaded file that contains validation data. If you provide this file, the data is used to generate validation metrics periodically during fine-tuning. These metrics can be viewed in the fine-tuning results file. The same data should not be present in both train and validation files. Your dataset must be formatted as a JSONL file. You must upload your file with the purpose fine-tune. See the fine-tuning guide for more details.
Attributes
- Companion
- object
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Objecttrait Matchableclass AnyShow all
Attributes
- Companion
- class
- Supertypes
-
trait Producttrait Mirrorclass Objecttrait Matchableclass Any
- Self type
The fine_tuning.job object represents a fine-tuning job that has been created through the API.
The fine_tuning.job object represents a fine-tuning job that has been created through the API.
Value parameters
- `object`
-
The object type, which is always "fine_tuning.job".
- createdAt
-
The Unix timestamp (in seconds) for when the fine-tuning job was created.
- error
-
For fine-tuning jobs that have failed, this will contain more information on the cause of the failure.
- estimatedFinish
-
The Unix timestamp (in seconds) for when the fine-tuning job is estimated to finish. The value will be null if the fine-tuning job is not running.
- fineTunedModel
-
The name of the fine-tuned model that is being created. The value will be null if the fine-tuning job is still running.
- finishedAt
-
The Unix timestamp (in seconds) for when the fine-tuning job was finished. The value will be null if the fine-tuning job is still running.
- hyperparameters
-
The hyperparameters used for the fine-tuning job. This value will only be returned when running supervised jobs.
- id
-
The object identifier, which can be referenced in the API endpoints.
- integrations
-
A list of integrations to enable for this fine-tuning job.
- method
-
The method used for fine-tuning.
- model
-
The base model that is being fine-tuned.
- organizationId
-
The organization that owns the fine-tuning job.
- resultFiles
-
The compiled results file ID(s) for the fine-tuning job. You can retrieve the results with the Files API.
- seed
-
The seed used for the fine-tuning job.
- status
-
The current status of the fine-tuning job, which can be either validating_files, queued, running, succeeded, failed, or cancelled.
- trainedTokens
-
The total number of billable tokens processed by this fine-tuning job. The value will be null if the fine-tuning job is still running.
- trainingFile
-
The file ID used for training. You can retrieve the training data with the Files API.
- validationFile
-
The file ID used for validation. You can retrieve the validation results with the Files API.
Attributes
- Companion
- object
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Objecttrait Matchableclass AnyShow all
Attributes
- Companion
- class
- Supertypes
-
trait Producttrait Mirrorclass Objecttrait Matchableclass Any
- Self type
Attributes
- Companion
- object
- Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
-
class CustomFineTuningModelobject GPT35Turbo0125object GPT35Turbo0613object GPT35Turbo1106object GPT40613object GPT4o20240806object GPT4oMini20240718Show all
Attributes
- Companion
- class
- Supertypes
-
trait Sumtrait Mirrorclass Objecttrait Matchableclass Any
- Self type
-
FineTuningModel.type
Value parameters
- batchSize
-
Number of examples in each batch. A larger batch size means that model parameters are updated less frequently, but with lower variance.
- beta
-
The beta value for the DPO method. A higher beta value will increase the weight of the penalty between the policy and reference model.
- learningRateMultiplier
-
Scaling factor for the learning rate. A smaller learning rate may be useful to avoid overfitting.
- nEpochs
-
The number of epochs to train the model for. An epoch refers to one full cycle through the training dataset.
Attributes
- Companion
- object
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Objecttrait Matchableclass AnyShow all
Attributes
- Companion
- class
- Supertypes
-
trait Producttrait Mirrorclass Objecttrait Matchableclass Any
- Self type
-
Hyperparameters.type
Value parameters
- `type`
-
The type of integration to enable. Currently, only "wandb" (Weights and Biases) is supported.
- wandb
-
The settings for your integration with Weights and Biases. This payload specifies the project that metrics will be sent to. Optionally, you can set an explicit display name for your run, add tags to your run, and set a default entity (team, username, etc) to be associated with your run.
Attributes
- Companion
- object
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Objecttrait Matchableclass AnyShow all
Attributes
- Companion
- class
- Supertypes
-
trait Producttrait Mirrorclass Objecttrait Matchableclass Any
- Self type
-
Integration.type
Attributes
- Companion
- object
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Objecttrait Matchableclass AnyShow all
Attributes
- Companion
- class
- Supertypes
-
trait Producttrait Mirrorclass Objecttrait Matchableclass Any
- Self type
Attributes
- Companion
- object
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Objecttrait Matchableclass AnyShow all
Attributes
- Companion
- class
- Supertypes
-
trait Producttrait Mirrorclass Objecttrait Matchableclass Any
- Self type
Attributes
- Companion
- object
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Objecttrait Matchableclass AnyShow all
Attributes
- Companion
- class
- Supertypes
-
trait Producttrait Mirrorclass Objecttrait Matchableclass Any
- Self type
Value parameters
- `type`
-
The type of method. Is either supervised or dpo.
- dpo
-
Configuration for the DPO fine-tuning method.
- supervised
-
Configuration for the supervised fine-tuning method.
Attributes
- Companion
- object
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Objecttrait Matchableclass AnyShow all
Attributes
- Companion
- object
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Objecttrait Matchableclass AnyShow all
Value parameters
- after
-
Identifier for the last job from the previous pagination request.
- limit
-
Number of fine-tuning jobs to retrieve.
Attributes
- Companion
- object
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Objecttrait Matchableclass AnyShow all
Attributes
- Companion
- class
- Supertypes
-
trait Producttrait Mirrorclass Objecttrait Matchableclass Any
- Self type
-
QueryParameters.type
Attributes
- Companion
- object
- Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
-
object Cancelledclass CustomStatusobject Failedobject Queuedobject Runningobject Succeededobject ValidatingFilesShow all
Value parameters
- hyperparameters
-
The hyperparameters used for the fine-tuning job.
Attributes
- Companion
- object
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Objecttrait Matchableclass AnyShow all
Attributes
- Companion
- class
- Supertypes
-
trait Producttrait Mirrorclass Objecttrait Matchableclass Any
- Self type
-
Supervised.type
Attributes
- Companion
- object
- Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
Value parameters
- entity
-
The entity to use for the run. This allows you to set the team or username of the WandB user that you would like associated with the run. If not set, the default entity for the registered WandB API key is used.
- name
-
A display name to set for the run. If not set, we will use the Job ID as the name.
- project
-
The name of the project that the new run will be created under.
- tags
-
A list of tags to be attached to the newly created run. These tags are passed through directly to WandB. Some default tags are generated by OpenAI: "openai/finetune", "openai/{base-model}", "openai/{ftjob-abcdef}".
Attributes
- Companion
- object
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Objecttrait Matchableclass AnyShow all