ServerSecurityTests

class ServerSecurityTests[F[_], S, OPTIONS, ROUTE](createServerTest: CreateServerTest[F, S, OPTIONS, ROUTE])(implicit m: MonadError[F]) extends Matchers
trait Matchers
trait Explicitly
trait MatcherWords
trait ShouldVerb
trait Tolerance
trait Assertions
trait TripleEquals
trait TripleEqualsSupport
class Object
trait Matchable
class Any

Type members

Inherited classlikes

final class AWord

This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of the matchers DSL.

This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of the matchers DSL.

Inherited from:
Matchers
final class AnWord

This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of the matchers DSL.

This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of the matchers DSL.

Inherited from:
Matchers
sealed class AnyShouldWrapper[T](val leftSideValue: T, val pos: Position, val prettifier: Prettifier)

This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of the matchers DSL.

This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of the matchers DSL.

This class is used in conjunction with an implicit conversion to enable should methods to be invoked on objects of type Any.

Inherited from:
Matchers
class CheckingEqualizer[L](val leftSide: L)

Class used via an implicit conversion to enable two objects to be compared with === and !== with a Boolean result and an enforced type constraint between two object types. For example:

Class used via an implicit conversion to enable two objects to be compared with === and !== with a Boolean result and an enforced type constraint between two object types. For example:

assert(a === b)
assert(c !== d)

You can also check numeric values against another with a tolerance. Here are some examples:

assert(a === (2.0 +- 0.1))
assert(c !== (2.0 +- 0.1))
Value parameters:
leftSide

An object to convert to Equalizer, which represents the value on the left side of a === or !== invocation.

Inherited from:
TripleEqualsSupport
class DecidedByEquality[A](equality: Equality[A]) extends Equality[A]

This class is part of the Scalactic “explicitly DSL”. Please see the documentation for Explicitly for an overview of the explicitly DSL.

This class is part of the Scalactic “explicitly DSL”. Please see the documentation for Explicitly for an overview of the explicitly DSL.

Instances of this class are returned via the decided by <an Equality> syntax, and enables afterBeing to be invoked on it. Here's an example, given an Equality[String] named myStringEquality:

result should equal ("hello") (decided by myStringEquality afterBeing lowerCased)
Inherited from:
Explicitly

This class is part of the Scalactic “explicitly DSL”. Please see the documentation for Explicitly for an overview of the explicitly DSL.

This class is part of the Scalactic “explicitly DSL”. Please see the documentation for Explicitly for an overview of the explicitly DSL.

Inherited from:
Explicitly
class DeterminedByEquivalence[T](equivalence: Equivalence[T]) extends Equivalence[T]

This class is part of the Scalactic “explicitly DSL”. Please see the documentation for Explicitly for an overview of the explicitly DSL.

This class is part of the Scalactic “explicitly DSL”. Please see the documentation for Explicitly for an overview of the explicitly DSL.

Instances of this class are returned via the decided by <an Equivalence> syntax, and enables afterBeing to be invoked on it. Here's an example, given an Equivalence[String] named myStringEquivalence:

result should equal ("hello") (determined by myStringEquivalence afterBeing lowerCased)
Inherited from:
Explicitly

This class is part of the Scalactic “explicitly DSL”. Please see the documentation for Explicitly for an overview of the explicitly DSL.

This class is part of the Scalactic “explicitly DSL”. Please see the documentation for Explicitly for an overview of the explicitly DSL.

Inherited from:
Explicitly
class Equalizer[L](val leftSide: L)

Class used via an implicit conversion to enable any two objects to be compared with === and !== with a Boolean result and no enforced type constraint between two object types. For example:

Class used via an implicit conversion to enable any two objects to be compared with === and !== with a Boolean result and no enforced type constraint between two object types. For example:

assert(a === b)
assert(c !== d)

You can also check numeric values against another with a tolerance. Here are some examples:

assert(a === (2.0 +- 0.1))
assert(c !== (2.0 +- 0.1))
Value parameters:
leftSide

An object to convert to Equalizer, which represents the value on the left side of a === or !== invocation.

Inherited from:
TripleEqualsSupport
final class HavePropertyMatcherGenerator(symbol: Symbol, prettifer: Prettifier, pos: Position)

This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of the matchers DSL.

This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of the matchers DSL.

This class is used as the result of an implicit conversion from class Symbol, to enable symbols to be used in have ('author ("Dickens")) syntax. The name of the implicit conversion method is convertSymbolToHavePropertyMatcherGenerator.

Class HavePropertyMatcherGenerator's primary constructor takes a Symbol. The apply method uses reflection to find and access a property that has the name specified by the Symbol passed to the constructor, so it can determine if the property has the expected value passed to apply. If the symbol passed is 'title, for example, the apply method will use reflection to look for a public Java field named "title", a public method named "title", or a public method named "getTitle". If a method, it must take no parameters. If multiple candidates are found, the apply method will select based on the following algorithm:

FieldMethod"get" MethodResult
   Throws TestFailedException, because no candidates found
  getTitle()Invokes getTitle()
 title() Invokes title()
 title()getTitle()Invokes title() (this can occur when BeanProperty annotation is used)
title  Accesses field title
title getTitle()Invokes getTitle()
titletitle() Invokes title()
titletitle()getTitle()Invokes title() (this can occur when BeanProperty annotation is used)
Inherited from:
Matchers
final class KeyWord

This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of the matchers DSL.

This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of the matchers DSL.

Inherited from:
Matchers
final class PlusOrMinusWrapper[T](pivot: T)(implicit evidence$1: Numeric[T])

Wrapper class with a +- method that, given a Numeric argument, returns a Spread.

Wrapper class with a +- method that, given a Numeric argument, returns a Spread.

Value parameters:
tolerance

the tolerance with which to create (and return) a Spread

Inherited from:
Tolerance
final class RegexWord

This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of the matchers DSL.

This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of the matchers DSL.

Inherited from:
Matchers
class ResultOfBeWordForAny[T](left: T, shouldBeTrue: Boolean, prettifier: Prettifier, pos: Position)

This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of the matchers DSL.

This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of the matchers DSL.

Inherited from:
Matchers
sealed class ResultOfBeWordForCollectedAny[T](collected: Collected, xs: Iterable[T], original: Any, shouldBeTrue: Boolean, prettifier: Prettifier, pos: Position)

This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of the matchers DSL.

This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of the matchers DSL.

Inherited from:
Matchers
final class ResultOfBeWordForCollectedArray[T](collected: Collected, xs: Iterable[Array[T]], original: Any, shouldBeTrue: Boolean, prettifier: Prettifier, pos: Position) extends ResultOfBeWordForCollectedAny[Array[T]]

This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of the matchers DSL.

This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of the matchers DSL.

Inherited from:
Matchers
final class ResultOfCollectedAny[T](collected: Collected, xs: Iterable[T], original: Any, prettifier: Prettifier, pos: Position)

This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of the matchers DSL.

This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of the matchers DSL.

Inherited from:
Matchers
final class ResultOfContainWordForCollectedAny[T](collected: Collected, xs: Iterable[T], original: Any, shouldBeTrue: Boolean, prettifier: Prettifier, pos: Position)

This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of the matchers DSL.

This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of the matchers DSL.

Inherited from:
Matchers
final class ResultOfEndWithWordForCollectedString(collected: Collected, xs: Iterable[String], original: Any, shouldBeTrue: Boolean, prettifier: Prettifier, pos: Position)

This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of the matchers DSL.

This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of the matchers DSL.

Inherited from:
Matchers
final class ResultOfEndWithWordForString(left: String, shouldBeTrue: Boolean, prettifier: Prettifier, pos: Position)

This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of the matchers DSL.

This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of the matchers DSL.

Inherited from:
Matchers
final class ResultOfFullyMatchWordForCollectedString(collected: Collected, xs: Iterable[String], original: Any, shouldBeTrue: Boolean, prettifier: Prettifier, pos: Position)

This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of the matchers DSL.

This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of the matchers DSL.

Inherited from:
Matchers
final class ResultOfFullyMatchWordForString(left: String, shouldBeTrue: Boolean, prettifier: Prettifier, pos: Position)

This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of the matchers DSL.

This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of the matchers DSL.

Inherited from:
Matchers
final class ResultOfHaveWordForCollectedExtent[A](collected: Collected, xs: Iterable[A], original: Any, shouldBeTrue: Boolean, prettifier: Prettifier, pos: Position)

This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of the matchers DSL.

This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of the matchers DSL.

Inherited from:
Matchers
final class ResultOfHaveWordForExtent[A](left: A, shouldBeTrue: Boolean, prettifier: Prettifier, pos: Position)

This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of the matchers DSL.

This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of the matchers DSL.

Inherited from:
Matchers
final class ResultOfIncludeWordForCollectedString(collected: Collected, xs: Iterable[String], original: Any, shouldBeTrue: Boolean, prettifier: Prettifier, pos: Position)

This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of the matchers DSL.

This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of the matchers DSL.

Inherited from:
Matchers
final class ResultOfIncludeWordForString(left: String, shouldBeTrue: Boolean, prettifier: Prettifier, pos: Position)

This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of the matchers DSL.

This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of the matchers DSL.

Inherited from:
Matchers
final class ResultOfNotWordForCollectedAny[T](collected: Collected, xs: Iterable[T], original: Any, shouldBeTrue: Boolean, prettifier: Prettifier, pos: Position)

This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of the matchers DSL.

This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of the matchers DSL.

Inherited from:
Matchers
final class ResultOfStartWithWordForCollectedString(collected: Collected, xs: Iterable[String], original: Any, shouldBeTrue: Boolean, prettifier: Prettifier, pos: Position)

This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of the matchers DSL.

This class is part of the ScalaTest matchers DSL. Please see the documentation for InspectorsMatchers for an overview of the matchers DSL.

Inherited from:
Matchers
final class ResultOfStartWithWordForString(left: String, shouldBeTrue: Boolean, prettifier: Prettifier, pos: Position)

This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of the matchers DSL.

This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of the matchers DSL.

Inherited from:
Matchers

This class supports the syntax of FlatSpec, WordSpec, fixture.FlatSpec, and fixture.WordSpec.

This class supports the syntax of FlatSpec, WordSpec, fixture.FlatSpec, and fixture.WordSpec.

This class is used in conjunction with an implicit conversion to enable should methods to be invoked on Strings.

Inherited from:
ShouldVerb

This class is part of the Scalactic “explicitly DSL”. Please see the documentation for Explicitly for an overview of the explicitly DSL.

This class is part of the Scalactic “explicitly DSL”. Please see the documentation for Explicitly for an overview of the explicitly DSL.

Inherited from:
Explicitly

This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of the matchers DSL.

This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of the matchers DSL.

Inherited from:
Matchers
Inherited from:
Assertions
final class ValueWord

This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of the matchers DSL.

This class is part of the ScalaTest matchers DSL. Please see the documentation for Matchers for an overview of the matchers DSL.

Inherited from:
Matchers

Value members

Concrete methods

def tests(): List[Test]

Inherited methods

def !==[T](right: Spread[T]): TripleEqualsInvocationOnSpread[T]

Returns a TripleEqualsInvocationOnSpread[T], given an Spread[T], to facilitate the “<left> should !== (<pivot> +- <tolerance>)” syntax of Matchers.

Returns a TripleEqualsInvocationOnSpread[T], given an Spread[T], to facilitate the “<left> should !== (<pivot> +- <tolerance>)” syntax of Matchers.

Value parameters:
right

the Spread[T] against which to compare the left-hand value

Returns:

a TripleEqualsInvocationOnSpread wrapping the passed Spread[T] value, with expectingEqual set to false.

Inherited from:
TripleEqualsSupport
def !==(right: Null): TripleEqualsInvocation[Null]

Returns a TripleEqualsInvocation[Null], given a null reference, to facilitate the “<left> should !== null” syntax of Matchers.

Returns a TripleEqualsInvocation[Null], given a null reference, to facilitate the “<left> should !== null” syntax of Matchers.

Value parameters:
right

a null reference

Returns:

a TripleEqualsInvocation wrapping the passed null value, with expectingEqual set to false.

Inherited from:
TripleEqualsSupport
def !==[T](right: T): TripleEqualsInvocation[T]

Returns a TripleEqualsInvocation[T], given an object of type T, to facilitate the “<left> should !== <right>” syntax of Matchers.

Returns a TripleEqualsInvocation[T], given an object of type T, to facilitate the “<left> should !== <right>” syntax of Matchers.

Value parameters:
right

the right-hand side value for an equality assertion

Returns:

a TripleEqualsInvocation wrapping the passed right value, with expectingEqual set to false.

Inherited from:
TripleEqualsSupport
def <[T : Ordering](right: T): ResultOfLessThanComparison[T]

This method enables the following syntax:

This method enables the following syntax:

num should (not be < (10) and not be > (17))
                  ^
Inherited from:
Matchers
def <=[T : Ordering](right: T): ResultOfLessThanOrEqualToComparison[T]

This method enables the following syntax:

This method enables the following syntax:

num should (not be <= (10) and not be > (17))
                  ^
Inherited from:
Matchers
def ===[T](right: Spread[T]): TripleEqualsInvocationOnSpread[T]

Returns a TripleEqualsInvocationOnSpread[T], given an Spread[T], to facilitate the “<left> should === (<pivot> +- <tolerance>)” syntax of Matchers.

Returns a TripleEqualsInvocationOnSpread[T], given an Spread[T], to facilitate the “<left> should === (<pivot> +- <tolerance>)” syntax of Matchers.

Value parameters:
right

the Spread[T] against which to compare the left-hand value

Returns:

a TripleEqualsInvocationOnSpread wrapping the passed Spread[T] value, with expectingEqual set to true.

Inherited from:
TripleEqualsSupport
def ===(right: Null): TripleEqualsInvocation[Null]

Returns a TripleEqualsInvocation[Null], given a null reference, to facilitate the “<left> should === null” syntax of Matchers.

Returns a TripleEqualsInvocation[Null], given a null reference, to facilitate the “<left> should === null” syntax of Matchers.

Value parameters:
right

a null reference

Returns:

a TripleEqualsInvocation wrapping the passed null value, with expectingEqual set to true.

Inherited from:
TripleEqualsSupport
def ===[T](right: T): TripleEqualsInvocation[T]

Returns a TripleEqualsInvocation[T], given an object of type T, to facilitate the “<left> should === <right>” syntax of Matchers.

Returns a TripleEqualsInvocation[T], given an object of type T, to facilitate the “<left> should === <right>” syntax of Matchers.

Value parameters:
right

the right-hand side value for an equality assertion

Returns:

a TripleEqualsInvocation wrapping the passed right value, with expectingEqual set to true.

Inherited from:
TripleEqualsSupport
def >[T : Ordering](right: T): ResultOfGreaterThanComparison[T]

This method enables the following syntax:

This method enables the following syntax:

num should (not be > (10) and not be < (7))
                  ^
Inherited from:
Matchers
def >=[T : Ordering](right: T): ResultOfGreaterThanOrEqualToComparison[T]

This method enables the following syntax:

This method enables the following syntax:

num should (not be >= (10) and not be < (7))
                  ^
Inherited from:
Matchers
def a[T : ClassTag]: ResultOfATypeInvocation[T]

This method enables the following syntax:

This method enables the following syntax:

a [RuntimeException] should be thrownBy { ... }
^
Inherited from:
Matchers
def all(xs: String)(implicit collecting: Collecting[Char, String], prettifier: Prettifier, pos: Position): ResultOfCollectedAny[Char]

This method enables the following syntax for String:

This method enables the following syntax for String:

all(str) should fullymatch regex ("Hel*o world".r)
^
Inherited from:
Matchers
def all[K, V, JMAP <: (Map)](xs: JMAP[K, V])(implicit collecting: Collecting[Entry[K, V], JMAP[K, V]], prettifier: Prettifier, pos: Position): ResultOfCollectedAny[Entry[K, V]]

This method enables the following syntax for java.util.Map:

This method enables the following syntax for java.util.Map:

all(jmap) should fullymatch regex ("Hel*o world".r)
^
Inherited from:
Matchers
def all[K, V, MAP <: (Map)](xs: MAP[K, V])(implicit collecting: Collecting[(K, V), Iterable[(K, V)]], prettifier: Prettifier, pos: Position): ResultOfCollectedAny[(K, V)]

This method enables the following syntax for scala.collection.GenMap:

This method enables the following syntax for scala.collection.GenMap:

all(map) should fullymatch regex ("Hel*o world".r)
^
Inherited from:
Matchers
def all[E, C[_]](xs: C[E])(implicit collecting: Collecting[E, C[E]], prettifier: Prettifier, pos: Position): ResultOfCollectedAny[E]

This method enables the following syntax:

This method enables the following syntax:

all(xs) should fullymatch regex ("Hel*o world".r)
^
Inherited from:
Matchers
def allElementsOf[R](elements: Iterable[R]): ResultOfAllElementsOfApplication

This method enables the following syntax:

This method enables the following syntax:

List(1, 2, 3) should contain (allElementsOf(1, 2))
                             ^
Inherited from:
Matchers
def allOf(firstEle: Any, secondEle: Any, remainingEles: Any*)(implicit pos: Position): ResultOfAllOfApplication

This method enables the following syntax:

This method enables the following syntax:

List(1, 2, 3) should contain (allOf(1, 2))
                             ^
Inherited from:
Matchers
def an[T : ClassTag]: ResultOfAnTypeInvocation[T]

This method enables the following syntax:

This method enables the following syntax:

an [Exception] should be thrownBy { ... }
^
Inherited from:
Matchers
inline def assert(inline condition: Boolean, clue: Any)(implicit prettifier: Prettifier, pos: Position, use: UseDefaultAssertions.type): Assertion

Assert that a boolean condition, described in String message, is true. If the condition is true, this method returns normally. Else, it throws TestFailedException with a helpful error message appended with the String obtained by invoking toString on the specified clue as the exception's detail message.

Assert that a boolean condition, described in String message, is true. If the condition is true, this method returns normally. Else, it throws TestFailedException with a helpful error message appended with the String obtained by invoking toString on the specified clue as the exception's detail message.

This method is implemented in terms of a Scala macro that will generate a more helpful error message for expressions of this form:

  • assert(a == b, "a good clue")

  • assert(a != b, "a good clue")

  • assert(a === b, "a good clue")

  • assert(a !== b, "a good clue")

  • assert(a > b, "a good clue")

  • assert(a >= b, "a good clue")

  • assert(a < b, "a good clue")

  • assert(a <= b, "a good clue")

  • assert(a startsWith "prefix", "a good clue")

  • assert(a endsWith "postfix", "a good clue")

  • assert(a contains "something", "a good clue")

  • assert(a eq b, "a good clue")

  • assert(a ne b, "a good clue")

  • assert(a > 0 && b > 5, "a good clue")

  • assert(a > 0 || b > 5, "a good clue")

  • assert(a.isEmpty, "a good clue")

  • assert(!a.isEmpty, "a good clue")

  • assert(a.isInstanceOf[String], "a good clue")

  • assert(a.length == 8, "a good clue")

  • assert(a.size == 8, "a good clue")

  • assert(a.exists(_ == 8), "a good clue")

At this time, any other form of expression will just get a TestFailedException with message saying the given expression was false. In the future, we will enhance this macro to give helpful error messages in more situations. In ScalaTest 2.0, however, this behavior was sufficient to allow the === that returns Boolean to be the default in tests. This makes === consistent between tests and production code.

Value parameters:
clue

An objects whose toString method returns a message to include in a failure report.

condition

the boolean condition to assert

Throws:
NullArgumentException

if message is null.

TestFailedException

if the condition is false.

Inherited from:
Assertions
inline def assert(inline condition: Boolean)(implicit prettifier: Prettifier, pos: Position, use: UseDefaultAssertions.type): Assertion

Assert that a boolean condition is true. If the condition is true, this method returns normally. Else, it throws TestFailedException.

Assert that a boolean condition is true. If the condition is true, this method returns normally. Else, it throws TestFailedException.

This method is implemented in terms of a Scala macro that will generate a more helpful error message for expressions of this form:

  • assert(a == b)

  • assert(a != b)

  • assert(a === b)

  • assert(a !== b)

  • assert(a > b)

  • assert(a >= b)

  • assert(a < b)

  • assert(a <= b)

  • assert(a startsWith "prefix")

  • assert(a endsWith "postfix")

  • assert(a contains "something")

  • assert(a eq b)

  • assert(a ne b)

  • assert(a > 0 && b > 5)

  • assert(a > 0 || b > 5)

  • assert(a.isEmpty)

  • assert(!a.isEmpty)

  • assert(a.isInstanceOf[String])

  • assert(a.length == 8)

  • assert(a.size == 8)

  • assert(a.exists(_ == 8))

At this time, any other form of expression will get a TestFailedException with message saying the given expression was false. In the future, we will enhance this macro to give helpful error messages in more situations. In ScalaTest 2.0, however, this behavior was sufficient to allow the === that returns Boolean to be the default in tests. This makes === consistent between tests and production code.

Value parameters:
condition

the boolean condition to assert

Throws:
TestFailedException

if the condition is false.

Inherited from:
Assertions
transparent inline def assertCompiles(inline code: String): Assertion

Asserts that a given string snippet of code passes both the Scala parser and type checker.

Asserts that a given string snippet of code passes both the Scala parser and type checker.

You can use this to make sure a snippet of code compiles:

assertCompiles("val a: Int = 1")

Although assertCompiles is implemented with a macro that determines at compile time whether the snippet of code represented by the passed string compiles, errors (i.e., snippets of code that do not compile) are reported as test failures at runtime.

Value parameters:
code

the snippet of code that should compile

Inherited from:
Assertions
transparent inline def assertDoesNotCompile(inline code: String): Assertion

Asserts that a given string snippet of code does not pass either the Scala parser or type checker.

Asserts that a given string snippet of code does not pass either the Scala parser or type checker.

Often when creating libraries you may wish to ensure that certain arrangements of code that represent potential “user errors” do not compile, so that your library is more error resistant. ScalaTest's Assertions trait includes the following syntax for that purpose:

assertDoesNotCompile("val a: String = \"a string")

Although assertDoesNotCompile is implemented with a macro that determines at compile time whether the snippet of code represented by the passed string doesn't compile, errors (i.e., snippets of code that do compile) are reported as test failures at runtime.

Note that the difference between assertTypeError and assertDoesNotCompile is that assertDoesNotCompile will succeed if the given code does not compile for any reason, whereas assertTypeError will only succeed if the given code does not compile because of a type error. If the given code does not compile because of a syntax error, for example, assertDoesNotCompile will return normally but assertTypeError will throw a TestFailedException.

Value parameters:
code

the snippet of code that should not type check

Inherited from:
Assertions
inline def assertResult[L, R](expected: L)(actual: R)(implicit prettifier: Prettifier, caneq: CanEqual[L, R]): Assertion

Assert that the value passed as expected equals the value passed as actual. If the actual value equals the expected value (as determined by ==), assertResult returns normally. Else, assertResult throws a TestFailedException whose detail message includes the expected and actual values.

Assert that the value passed as expected equals the value passed as actual. If the actual value equals the expected value (as determined by ==), assertResult returns normally. Else, assertResult throws a TestFailedException whose detail message includes the expected and actual values.

Value parameters:
actual

the actual value, which should equal the passed expected value

expected

the expected value

Throws:
TestFailedException

if the passed actual value does not equal the passed expected value.

Inherited from:
Assertions
inline def assertResult[L, R](expected: L, clue: Any)(actual: R)(implicit prettifier: Prettifier, caneq: CanEqual[L, R]): Assertion

Assert that the value passed as expected equals the value passed as actual. If the actual equals the expected (as determined by ==), assertResult returns normally. Else, if actual is not equal to expected, assertResult throws a TestFailedException whose detail message includes the expected and actual values, as well as the String obtained by invoking toString on the passed clue.

Assert that the value passed as expected equals the value passed as actual. If the actual equals the expected (as determined by ==), assertResult returns normally. Else, if actual is not equal to expected, assertResult throws a TestFailedException whose detail message includes the expected and actual values, as well as the String obtained by invoking toString on the passed clue.

Value parameters:
actual

the actual value, which should equal the passed expected value

clue

An object whose toString method returns a message to include in a failure report.

expected

the expected value

Throws:
TestFailedException

if the passed actual value does not equal the passed expected value.

Inherited from:
Assertions
inline def assertThrows[T <: AnyRef](f: => Any)(implicit classTag: ClassTag[T]): Assertion

Ensure that an expected exception is thrown by the passed function value. The thrown exception must be an instance of the type specified by the type parameter of this method. This method invokes the passed function. If the function throws an exception that's an instance of the specified type, this method returns Succeeded. Else, whether the passed function returns normally or completes abruptly with a different exception, this method throws TestFailedException.

Ensure that an expected exception is thrown by the passed function value. The thrown exception must be an instance of the type specified by the type parameter of this method. This method invokes the passed function. If the function throws an exception that's an instance of the specified type, this method returns Succeeded. Else, whether the passed function returns normally or completes abruptly with a different exception, this method throws TestFailedException.

Note that the type specified as this method's type parameter may represent any subtype of AnyRef, not just Throwable or one of its subclasses. In Scala, exceptions can be caught based on traits they implement, so it may at times make sense to specify a trait that the intercepted exception's class must mix in. If a class instance is passed for a type that could not possibly be used to catch an exception (such as String, for example), this method will complete abruptly with a TestFailedException.

Also note that the difference between this method and intercept is that this method does not return the expected exception, so it does not let you perform further assertions on that exception. Instead, this method returns Succeeded, which means it can serve as the last statement in an async- or safe-style suite. It also indicates to the reader of the code that nothing further is expected about the thrown exception other than its type. The recommended usage is to use assertThrows by default, intercept only when you need to inspect the caught exception further.

Value parameters:
classTag

an implicit ClassTag representing the type of the specified type parameter.

f

the function value that should throw the expected exception

Returns:

the Succeeded singleton, if an exception of the expected type is thrown

Throws:
TestFailedException

if the passed function does not complete abruptly with an exception that's an instance of the specified type.

Inherited from:
Assertions
transparent inline def assertTypeError(inline code: String): Assertion

Asserts that a given string snippet of code does not pass the Scala type checker, failing if the given snippet does not pass the Scala parser.

Asserts that a given string snippet of code does not pass the Scala type checker, failing if the given snippet does not pass the Scala parser.

Often when creating libraries you may wish to ensure that certain arrangements of code that represent potential “user errors” do not compile, so that your library is more error resistant. ScalaTest's Assertions trait includes the following syntax for that purpose:

assertTypeError("val a: String = 1")

Although assertTypeError is implemented with a macro that determines at compile time whether the snippet of code represented by the passed string type checks, errors (i.e., snippets of code that do type check) are reported as test failures at runtime.

Note that the difference between assertTypeError and assertDoesNotCompile is that assertDoesNotCompile will succeed if the given code does not compile for any reason, whereas assertTypeError will only succeed if the given code does not compile because of a type error. If the given code does not compile because of a syntax error, for example, assertDoesNotCompile will return normally but assertTypeError will throw a TestFailedException.

Value parameters:
code

the snippet of code that should not type check

Inherited from:
Assertions
inline def assume(inline condition: Boolean, clue: Any)(implicit prettifier: Prettifier, pos: Position, use: UseDefaultAssertions.type): Assertion

Assume that a boolean condition, described in String message, is true. If the condition is true, this method returns normally. Else, it throws TestCanceledException with a helpful error message appended with String obtained by invoking toString on the specified clue as the exception's detail message.

Assume that a boolean condition, described in String message, is true. If the condition is true, this method returns normally. Else, it throws TestCanceledException with a helpful error message appended with String obtained by invoking toString on the specified clue as the exception's detail message.

This method is implemented in terms of a Scala macro that will generate a more helpful error message for expressions of this form:

  • assume(a == b, "a good clue")

  • assume(a != b, "a good clue")

  • assume(a === b, "a good clue")

  • assume(a !== b, "a good clue")

  • assume(a > b, "a good clue")

  • assume(a >= b, "a good clue")

  • assume(a < b, "a good clue")

  • assume(a <= b, "a good clue")

  • assume(a startsWith "prefix", "a good clue")

  • assume(a endsWith "postfix", "a good clue")

  • assume(a contains "something", "a good clue")

  • assume(a eq b, "a good clue")

  • assume(a ne b, "a good clue")

  • assume(a > 0 && b > 5, "a good clue")

  • assume(a > 0 || b > 5, "a good clue")

  • assume(a.isEmpty, "a good clue")

  • assume(!a.isEmpty, "a good clue")

  • assume(a.isInstanceOf[String], "a good clue")

  • assume(a.length == 8, "a good clue")

  • assume(a.size == 8, "a good clue")

  • assume(a.exists(_ == 8), "a good clue")

At this time, any other form of expression will just get a TestCanceledException with message saying the given expression was false. In the future, we will enhance this macro to give helpful error messages in more situations. In ScalaTest 2.0, however, this behavior was sufficient to allow the === that returns Boolean to be the default in tests. This makes === consistent between tests and production code.

Value parameters:
clue

An objects whose toString method returns a message to include in a failure report.

condition

the boolean condition to assume

Throws:
NullArgumentException

if message is null.

TestCanceledException

if the condition is false.

Inherited from:
Assertions
inline def assume(inline condition: Boolean)(implicit prettifier: Prettifier, pos: Position, use: UseDefaultAssertions.type): Assertion

Assume that a boolean condition is true. If the condition is true, this method returns normally. Else, it throws TestCanceledException.

Assume that a boolean condition is true. If the condition is true, this method returns normally. Else, it throws TestCanceledException.

This method is implemented in terms of a Scala macro that will generate a more helpful error message for expressions of this form:

  • assume(a == b)

  • assume(a != b)

  • assume(a === b)

  • assume(a !== b)

  • assume(a > b)

  • assume(a >= b)

  • assume(a < b)

  • assume(a <= b)

  • assume(a startsWith "prefix")

  • assume(a endsWith "postfix")

  • assume(a contains "something")

  • assume(a eq b)

  • assume(a ne b)

  • assume(a > 0 && b > 5)

  • assume(a > 0 || b > 5)

  • assume(a.isEmpty)

  • assume(!a.isEmpty)

  • assume(a.isInstanceOf[String])

  • assume(a.length == 8)

  • assume(a.size == 8)

  • assume(a.exists(_ == 8))

At this time, any other form of expression will just get a TestCanceledException with message saying the given expression was false. In the future, we will enhance this macro to give helpful error messages in more situations. In ScalaTest 2.0, however, this behavior was sufficient to allow the === that returns Boolean to be the default in tests. This makes === consistent between tests and production code.

Value parameters:
condition

the boolean condition to assume

Throws:
TestCanceledException

if the condition is false.

Inherited from:
Assertions
def atLeast(num: Int, xs: String)(implicit collecting: Collecting[Char, String], prettifier: Prettifier, pos: Position): ResultOfCollectedAny[Char]

This method enables the following syntax for String:

This method enables the following syntax for String:

atLeast(1, str) should fullymatch regex ("Hel*o world".r)
^
Inherited from:
Matchers
def atLeast[K, V, JMAP <: (Map)](num: Int, xs: JMAP[K, V])(implicit collecting: Collecting[Entry[K, V], JMAP[K, V]], prettifier: Prettifier, pos: Position): ResultOfCollectedAny[Entry[K, V]]

This method enables the following syntax for java.util.Map:

This method enables the following syntax for java.util.Map:

atLeast(1, jmap) should fullymatch regex ("Hel*o world".r)
^
Inherited from:
Matchers
def atLeast[K, V, MAP <: (Map)](num: Int, xs: MAP[K, V])(implicit collecting: Collecting[(K, V), Iterable[(K, V)]], prettifier: Prettifier, pos: Position): ResultOfCollectedAny[(K, V)]

This method enables the following syntax for scala.collection.GenMap:

This method enables the following syntax for scala.collection.GenMap:

atLeast(1, map) should fullymatch regex ("Hel*o world".r)
^
Inherited from:
Matchers
def atLeast[E, C[_]](num: Int, xs: C[E])(implicit collecting: Collecting[E, C[E]], prettifier: Prettifier, pos: Position): ResultOfCollectedAny[E]

This method enables the following syntax:

This method enables the following syntax:

atLeast(1, xs) should fullymatch regex ("Hel*o world".r)
^
Inherited from:
Matchers
def atLeastOneElementOf(elements: Iterable[Any]): ResultOfAtLeastOneElementOfApplication

This method enables the following syntax:

This method enables the following syntax:

List(1, 2, 3) should contain (atLeastOneElementOf (List(1, 2)))
                             ^
Inherited from:
Matchers
def atLeastOneOf(firstEle: Any, secondEle: Any, remainingEles: Any*)(implicit pos: Position): ResultOfAtLeastOneOfApplication

This method enables the following syntax:

This method enables the following syntax:

List(1, 2, 3) should contain (atLeastOneOf(1, 2))
                             ^
Inherited from:
Matchers
def atMost(num: Int, xs: String)(implicit collecting: Collecting[Char, String], prettifier: Prettifier, pos: Position): ResultOfCollectedAny[Char]

This method enables the following syntax for String:

This method enables the following syntax for String:

atMost(3, str) should fullymatch regex ("Hel*o world".r)
^
Inherited from:
Matchers
def atMost[K, V, JMAP <: (Map)](num: Int, xs: JMAP[K, V])(implicit collecting: Collecting[Entry[K, V], JMAP[K, V]], prettifier: Prettifier, pos: Position): ResultOfCollectedAny[Entry[K, V]]

This method enables the following syntax for java.util.Map:

This method enables the following syntax for java.util.Map:

atMost(3, jmap) should fullymatch regex ("Hel*o world".r)
^
Inherited from:
Matchers
def atMost[K, V, MAP <: (Map)](num: Int, xs: MAP[K, V])(implicit collecting: Collecting[(K, V), Iterable[(K, V)]], prettifier: Prettifier, pos: Position): ResultOfCollectedAny[(K, V)]

This method enables the following syntax for scala.collection.GenMap:

This method enables the following syntax for scala.collection.GenMap:

atMost(3, map) should fullymatch regex ("Hel*o world".r)
^
Inherited from:
Matchers
def atMost[E, C[_]](num: Int, xs: C[E])(implicit collecting: Collecting[E, C[E]], prettifier: Prettifier, pos: Position): ResultOfCollectedAny[E]

This method enables the following syntax:

This method enables the following syntax:

atMost(3, xs) should fullymatch regex ("Hel*o world".r)
^
Inherited from:
Matchers
def atMostOneElementOf[R](elements: Iterable[R]): ResultOfAtMostOneElementOfApplication

This method enables the following syntax:

This method enables the following syntax:

List(1, 2, 3) should contain (atMostOneElementOf (List(1, 2)))
                             ^
Inherited from:
Matchers
def atMostOneOf(firstEle: Any, secondEle: Any, remainingEles: Any*)(implicit pos: Position): ResultOfAtMostOneOfApplication

This method enables the following syntax:

This method enables the following syntax:

List(1, 2, 3) should contain (atMostOneOf(1, 2))
                             ^
Inherited from:
Matchers
def between(from: Int, upTo: Int, xs: String)(implicit collecting: Collecting[Char, String], prettifier: Prettifier, pos: Position): ResultOfCollectedAny[Char]

This method enables the following syntax for String:

This method enables the following syntax for String:

between(1, 3, str) should fullymatch regex ("Hel*o world".r)
^
Inherited from:
Matchers
def between[K, V, JMAP <: (Map)](from: Int, upTo: Int, xs: JMAP[K, V])(implicit collecting: Collecting[Entry[K, V], JMAP[K, V]], prettifier: Prettifier, pos: Position): ResultOfCollectedAny[Entry[K, V]]

This method enables the following syntax for java.util.Map:

This method enables the following syntax for java.util.Map:

between(1, 3, jmap) should fullymatch regex ("Hel*o world".r)
^
Inherited from:
Matchers
def between[E, C[_]](from: Int, upTo: Int, xs: C[E])(implicit collecting: Collecting[E, C[E]], prettifier: Prettifier, pos: Position): ResultOfCollectedAny[E]

This method enables the following syntax:

This method enables the following syntax:

between(1, 3, xs) should fullymatch regex ("Hel*o world".r)
^
Inherited from:
Matchers
inline def cancel(cause: Throwable): Nothing

Throws TestCanceledException, with the passed Throwable cause, to indicate a test failed. The getMessage method of the thrown TestCanceledException will return cause.toString.

Throws TestCanceledException, with the passed Throwable cause, to indicate a test failed. The getMessage method of the thrown TestCanceledException will return cause.toString.

Value parameters:
cause

a Throwable that indicates the cause of the cancellation.

Throws:
NullArgumentException

if cause is null

Inherited from:
Assertions
inline def cancel(message: String, cause: Throwable): Nothing

Throws TestCanceledException, with the passed String message as the exception's detail message and Throwable cause, to indicate a test failed.

Throws TestCanceledException, with the passed String message as the exception's detail message and Throwable cause, to indicate a test failed.

Value parameters:
cause

A Throwable that indicates the cause of the failure.

message

A message describing the failure.

Throws:
NullArgumentException

if message or cause is null

Inherited from:
Assertions
inline def cancel(message: String): Nothing

Throws TestCanceledException, with the passed String message as the exception's detail message, to indicate a test was canceled.

Throws TestCanceledException, with the passed String message as the exception's detail message, to indicate a test was canceled.

Value parameters:
message

A message describing the cancellation.

Throws:
NullArgumentException

if message is null

Inherited from:
Assertions
inline def cancel(): Nothing

Throws TestCanceledException to indicate a test was canceled.

Throws TestCanceledException to indicate a test was canceled.

Inherited from:
Assertions
override def convertEquivalenceToAToBConstraint[A, B](equivalenceOfB: Equivalence[B])(implicit ev: A <:< B): CanEqual[A, B]
Definition Classes
TripleEquals -> TripleEqualsSupport
Inherited from:
TripleEquals
override def convertEquivalenceToBToAConstraint[A, B](equivalenceOfA: Equivalence[A])(implicit ev: B <:< A): CanEqual[A, B]
Definition Classes
TripleEquals -> TripleEqualsSupport
Inherited from:
TripleEquals
override def convertToCheckingEqualizer[T](left: T): CheckingEqualizer[T]
Definition Classes
TripleEquals -> TripleEqualsSupport
Inherited from:
TripleEquals
def defaultEquality[A]: Equality[A]

Returns an Equality[A] for any type A that determines equality by first calling .deep on any Array (on either the left or right side), then comparing the resulting objects with ==.

Returns an Equality[A] for any type A that determines equality by first calling .deep on any Array (on either the left or right side), then comparing the resulting objects with ==.

Returns:

a default Equality for type A

Inherited from:
TripleEqualsSupport
def definedAt[T](right: T): ResultOfDefinedAt[T]

This method enables the following syntax:

This method enables the following syntax:

list should (not be definedAt (7) and not be definedAt (9))
                   ^
Inherited from:
Matchers
def equal(o: Null): Matcher[AnyRef]

This method enables syntax such as the following:

This method enables syntax such as the following:

result should equal (null)
             ^
Inherited from:
Matchers
def equal[T](spread: Spread[T]): Matcher[T]

This method enables syntax such as the following:

This method enables syntax such as the following:

result should equal (100 +- 1)
             ^
Inherited from:
Matchers
def equal(right: Any): MatcherFactory1[Any, Equality]

This method enables the following syntax:

This method enables the following syntax:

result should equal (7)
             ^

The left should equal (right) syntax works by calling == on the left value, passing in the right value, on every type except arrays. If both left and right are arrays, deep will be invoked on both left and right before comparing them with ==. Thus, even though this expression will yield false, because Array's equals method compares object identity:

Array(1, 2) == Array(1, 2) // yields false

The following expression will not result in a TestFailedException, because ScalaTest will compare the two arrays structurally, taking into consideration the equality of the array's contents:

Array(1, 2) should equal (Array(1, 2)) // succeeds (i.e., does not throw TestFailedException)

If you ever do want to verify that two arrays are actually the same object (have the same identity), you can use the be theSameInstanceAs syntax.

Inherited from:
MatcherWords
def every(xs: String)(implicit collecting: Collecting[Char, String], prettifier: Prettifier, pos: Position): ResultOfCollectedAny[Char]

This method enables the following syntax for String:

This method enables the following syntax for String:

every(str) should fullymatch regex ("Hel*o world".r)
^
Inherited from:
Matchers
def every[K, V, JMAP <: (Map)](xs: JMAP[K, V])(implicit collecting: Collecting[Entry[K, V], JMAP[K, V]], prettifier: Prettifier, pos: Position): ResultOfCollectedAny[Entry[K, V]]

This method enables the following syntax for java.util.Map:

This method enables the following syntax for java.util.Map:

every(jmap) should fullymatch regex ("Hel*o world".r)
^
Inherited from:
Matchers
def every[K, V, MAP <: (Map)](xs: MAP[K, V])(implicit collecting: Collecting[(K, V), Iterable[(K, V)]], prettifier: Prettifier, pos: Position): ResultOfCollectedAny[(K, V)]

This method enables the following syntax for scala.collection.GenMap:

This method enables the following syntax for scala.collection.GenMap:

every(map) should fullymatch regex ("Hel*o world".r)
^
Inherited from:
Matchers
def every[E, C[_]](xs: C[E])(implicit collecting: Collecting[E, C[E]], prettifier: Prettifier, pos: Position): ResultOfCollectedAny[E]

This method enables the following syntax:

This method enables the following syntax:

every(xs) should fullymatch regex ("Hel*o world".r)
^
Inherited from:
Matchers
def exactly(num: Int, xs: String)(implicit collecting: Collecting[Char, String], prettifier: Prettifier, pos: Position): ResultOfCollectedAny[Char]

This method enables the following syntax for String:

This method enables the following syntax for String:

exactly(str) should fullymatch regex ("Hel*o world".r)
^
Inherited from:
Matchers
def exactly[K, V, JMAP <: (Map)](num: Int, xs: JMAP[K, V])(implicit collecting: Collecting[Entry[K, V], JMAP[K, V]], prettifier: Prettifier, pos: Position): ResultOfCollectedAny[Entry[K, V]]

This method enables the following syntax for java.util.Map:

This method enables the following syntax for java.util.Map:

exactly(jmap) should fullymatch regex ("Hel*o world".r)
^
Inherited from:
Matchers
def exactly[K, V, MAP <: (Map)](num: Int, xs: MAP[K, V])(implicit collecting: Collecting[(K, V), Iterable[(K, V)]], prettifier: Prettifier, pos: Position): ResultOfCollectedAny[(K, V)]

This method enables the following syntax for scala.collection.GenMap:

This method enables the following syntax for scala.collection.GenMap:

exactly(map) should fullymatch regex ("Hel*o world".r)
^
Inherited from:
Matchers
def exactly[E, C[_]](num: Int, xs: C[E])(implicit collecting: Collecting[E, C[E]], prettifier: Prettifier, pos: Position): ResultOfCollectedAny[E]

This method enables the following syntax:

This method enables the following syntax:

exactly(xs) should fullymatch regex ("Hel*o world".r)
^
Inherited from:
Matchers
inline def fail(cause: Throwable): Nothing

Throws TestFailedException, with the passed Throwable cause, to indicate a test failed. The getMessage method of the thrown TestFailedException will return cause.toString.

Throws TestFailedException, with the passed Throwable cause, to indicate a test failed. The getMessage method of the thrown TestFailedException will return cause.toString.

Value parameters:
cause

a Throwable that indicates the cause of the failure.

Throws:
NullArgumentException

if cause is null

Inherited from:
Assertions
inline def fail(message: String, cause: Throwable): Nothing

Throws TestFailedException, with the passed String message as the exception's detail message and Throwable cause, to indicate a test failed.

Throws TestFailedException, with the passed String message as the exception's detail message and Throwable cause, to indicate a test failed.

Value parameters:
cause

A Throwable that indicates the cause of the failure.

message

A message describing the failure.

Throws:
NullArgumentException

if message or cause is null

Inherited from:
Assertions
inline def fail(message: String): Nothing

Throws TestFailedException, with the passed String message as the exception's detail message, to indicate a test failed.

Throws TestFailedException, with the passed String message as the exception's detail message, to indicate a test failed.

Value parameters:
message

A message describing the failure.

Throws:
NullArgumentException

if message is null

Inherited from:
Assertions
inline def fail(): Nothing

Throws TestFailedException to indicate a test failed.

Throws TestFailedException to indicate a test failed.

Inherited from:
Assertions
def inOrder(firstEle: Any, secondEle: Any, remainingEles: Any*)(implicit pos: Position): ResultOfInOrderApplication

This method enables the following syntax:

This method enables the following syntax:

List(1, 2, 3) should contain (inOrder(1, 2))
                             ^
Inherited from:
Matchers
def inOrderElementsOf[R](elements: Iterable[R]): ResultOfInOrderElementsOfApplication

This method enables the following syntax:

This method enables the following syntax:

List(1, 2, 3) should contain (inOrderElementsOf List(1, 2))
                             ^
Inherited from:
Matchers
def inOrderOnly[T](firstEle: Any, secondEle: Any, remainingEles: Any*)(implicit pos: Position): ResultOfInOrderOnlyApplication

This method enables the following syntax:

This method enables the following syntax:

List(1, 2, 3) should contain (inOrderOnly(1, 2))
                             ^
Inherited from:
Matchers
inline def intercept[T <: AnyRef](f: => Any)(implicit classTag: ClassTag[T]): T

Intercept and return an exception that's expected to be thrown by the passed function value. The thrown exception must be an instance of the type specified by the type parameter of this method. This method invokes the passed function. If the function throws an exception that's an instance of the specified type, this method returns that exception. Else, whether the passed function returns normally or completes abruptly with a different exception, this method throws TestFailedException.

Intercept and return an exception that's expected to be thrown by the passed function value. The thrown exception must be an instance of the type specified by the type parameter of this method. This method invokes the passed function. If the function throws an exception that's an instance of the specified type, this method returns that exception. Else, whether the passed function returns normally or completes abruptly with a different exception, this method throws TestFailedException.

Note that the type specified as this method's type parameter may represent any subtype of AnyRef, not just Throwable or one of its subclasses. In Scala, exceptions can be caught based on traits they implement, so it may at times make sense to specify a trait that the intercepted exception's class must mix in. If a class instance is passed for a type that could not possibly be used to catch an exception (such as String, for example), this method will complete abruptly with a TestFailedException.

Also note that the difference between this method and assertThrows is that this method returns the expected exception, so it lets you perform further assertions on that exception. By contrast, the assertThrows method returns Succeeded, which means it can serve as the last statement in an async- or safe-style suite. assertThrows also indicates to the reader of the code that nothing further is expected about the thrown exception other than its type. The recommended usage is to use assertThrows by default, intercept only when you need to inspect the caught exception further.

Value parameters:
classTag

an implicit ClassTag representing the type of the specified type parameter.

f

the function value that should throw the expected exception

Returns:

the intercepted exception, if it is of the expected type

Throws:
TestFailedException

if the passed function does not complete abruptly with an exception that's an instance of the specified type.

Inherited from:
Assertions
override def lowPriorityTypeCheckedConstraint[A, B](implicit equivalenceOfB: Equivalence[B], ev: A <:< B): CanEqual[A, B]
Definition Classes
TripleEquals -> TripleEqualsSupport
Inherited from:
TripleEquals
def message(expectedMessage: String): ResultOfMessageWordApplication

This method enables the following syntax:

This method enables the following syntax:

exception should not have message ("file not found")
                         ^
Inherited from:
Matchers
def no(xs: String)(implicit collecting: Collecting[Char, String], prettifier: Prettifier, pos: Position): ResultOfCollectedAny[Char]

This method enables the following syntax for String:

This method enables the following syntax for String:

no(str) should fullymatch regex ("Hel*o world".r)
^
Inherited from:
Matchers
def no[K, V, JMAP <: (Map)](xs: JMAP[K, V])(implicit collecting: Collecting[Entry[K, V], JMAP[K, V]], prettifier: Prettifier, pos: Position): ResultOfCollectedAny[Entry[K, V]]

This method enables the following syntax for java.util.Map:

This method enables the following syntax for java.util.Map:

no(jmap) should fullymatch regex ("Hel*o world".r)
^
Inherited from:
Matchers
def no[E, C[_]](xs: C[E])(implicit collecting: Collecting[E, C[E]], prettifier: Prettifier, pos: Position): ResultOfCollectedAny[E]

This method enables the following syntax:

This method enables the following syntax:

no(xs) should fullymatch regex ("Hel*o world".r)
^
Inherited from:
Matchers
def noElementsOf(elements: Iterable[Any]): ResultOfNoElementsOfApplication

This method enables the following syntax:

This method enables the following syntax:

List(1, 2, 3) should contain (noElementsOf List(1, 2))
                             ^
Inherited from:
Matchers
def noException(implicit pos: Position): NoExceptionWord

This field enables the following syntax:

This field enables the following syntax:

noException should be thrownBy
^
Inherited from:
MatcherWords
def noneOf(firstEle: Any, secondEle: Any, remainingEles: Any*)(implicit pos: Position): ResultOfNoneOfApplication

This method enables the following syntax:

This method enables the following syntax:

List(1, 2, 3) should contain (noneOf(1, 2))
                             ^
Inherited from:
Matchers
def of[T](implicit ev: ClassTag[T]): ResultOfOfTypeInvocation[T]

This method enables syntax such as the following:

This method enables syntax such as the following:

book should have (message ("A TALE OF TWO CITIES") (of [Book]), title ("A Tale of Two Cities"))
                                                   ^
Inherited from:
Matchers
def oneElementOf(elements: Iterable[Any]): ResultOfOneElementOfApplication

This method enables the following syntax:

This method enables the following syntax:

List(1, 2, 3) should contain (oneElementOf (List(1, 2)))
                             ^
Inherited from:
Matchers
def oneOf(firstEle: Any, secondEle: Any, remainingEles: Any*)(implicit pos: Position): ResultOfOneOfApplication

This method enables the following syntax:

This method enables the following syntax:

List(1, 2, 3) should contain (oneOf(1, 2))
                             ^
Inherited from:
Matchers
def only(xs: Any*)(implicit pos: Position): ResultOfOnlyApplication

This method enables the following syntax:

This method enables the following syntax:

List(1, 2, 3) should contain (only(1, 2))
                             ^
Inherited from:
Matchers
def pending: Assertion & PendingStatement

Throws TestPendingException to indicate a test is pending.

Throws TestPendingException to indicate a test is pending.

A pending test is one that has been given a name but is not yet implemented. The purpose of pending tests is to facilitate a style of testing in which documentation of behavior is sketched out before tests are written to verify that behavior (and often, the before the behavior of the system being tested is itself implemented). Such sketches form a kind of specification of what tests and functionality to implement later.

To support this style of testing, a test can be given a name that specifies one bit of behavior required by the system being tested. The test can also include some code that sends more information about the behavior to the reporter when the tests run. At the end of the test, it can call method pending, which will cause it to complete abruptly with TestPendingException. Because tests in ScalaTest can be designated as pending with TestPendingException, both the test name and any information sent to the reporter when running the test can appear in the report of a test run. (In other words, the code of a pending test is executed just like any other test.) However, because the test completes abruptly with TestPendingException, the test will be reported as pending, to indicate the actual test, and possibly the functionality it is intended to test, has not yet been implemented.

Note: This method always completes abruptly with a TestPendingException. Thus it always has a side effect. Methods with side effects are usually invoked with parentheses, as in pending(). This method is defined as a parameterless method, in flagrant contradiction to recommended Scala style, because it forms a kind of DSL for pending tests. It enables tests in suites such as FunSuite or FunSpec to be denoted by placing "(pending)" after the test name, as in:

test("that style rules are not laws") (pending)

Readers of the code see "pending" in parentheses, which looks like a little note attached to the test name to indicate it is pending. Whereas "(pending()) looks more like a method call, "(pending)" lets readers stay at a higher level, forgetting how it is implemented and just focusing on the intent of the programmer who wrote the code.

Inherited from:
Assertions
inline def pendingUntilFixed(f: => Unit): Assertion & PendingStatement

Execute the passed block of code, and if it completes abruptly, throw TestPendingException, else throw TestFailedException.

Execute the passed block of code, and if it completes abruptly, throw TestPendingException, else throw TestFailedException.

This method can be used to temporarily change a failing test into a pending test in such a way that it will automatically turn back into a failing test once the problem originally causing the test to fail has been fixed. At that point, you need only remove the pendingUntilFixed call. In other words, a pendingUntilFixed surrounding a block of code that isn't broken is treated as a test failure. The motivation for this behavior is to encourage people to remove pendingUntilFixed calls when there are no longer needed.

This method facilitates a style of testing in which tests are written before the code they test. Sometimes you may encounter a test failure that requires more functionality than you want to tackle without writing more tests. In this case you can mark the bit of test code causing the failure with pendingUntilFixed. You can then write more tests and functionality that eventually will get your production code to a point where the original test won't fail anymore. At this point the code block marked with pendingUntilFixed will no longer throw an exception (because the problem has been fixed). This will in turn cause pendingUntilFixed to throw TestFailedException with a detail message explaining you need to go back and remove the pendingUntilFixed call as the problem orginally causing your test code to fail has been fixed.

Value parameters:
f

a block of code, which if it completes abruptly, should trigger a TestPendingException

Throws:
TestPendingException

if the passed block of code completes abruptly with an Exception or AssertionError

Inherited from:
Assertions
def the[T : ClassTag](implicit evidence$7: ClassTag[T], pos: Position): ResultOfTheTypeInvocation[T]

This method enables the following syntax:

This method enables the following syntax:

the [FileNotFoundException] should be thrownBy { ... }
^
Inherited from:
Matchers
def theSameElementsAs(xs: Iterable[_]): ResultOfTheSameElementsAsApplication

This method enables the following syntax:

This method enables the following syntax:

List(1, 2, 3) should contain (theSameElementsAs(List(1, 2, 3)))
                             ^
Inherited from:
Matchers
def theSameElementsInOrderAs(xs: Iterable[_]): ResultOfTheSameElementsInOrderAsApplication

This method enables the following syntax:

This method enables the following syntax:

List(1, 2, 3) should contain (theSameElementsInOrderAs(List(1, 2)))
                             ^
Inherited from:
Matchers
def thrownBy(fun: => Any): ResultOfThrownByApplication

This method enables the following syntax:

This method enables the following syntax:

a [RuntimeException] should be thrownBy {...}
                              ^
Inherited from:
Matchers
override def typeCheckedConstraint[A, B](implicit equivalenceOfA: Equivalence[A], ev: B <:< A): CanEqual[A, B]
Definition Classes
TripleEquals -> TripleEqualsSupport
Inherited from:
TripleEquals
def withClue[T](clue: Any)(fun: => T): T

Executes the block of code passed as the second parameter, and, if it completes abruptly with a ModifiableMessage exception, prepends the "clue" string passed as the first parameter to the beginning of the detail message of that thrown exception, then rethrows it. If clue does not end in a white space character, one space will be added between it and the existing detail message (unless the detail message is not defined).

Executes the block of code passed as the second parameter, and, if it completes abruptly with a ModifiableMessage exception, prepends the "clue" string passed as the first parameter to the beginning of the detail message of that thrown exception, then rethrows it. If clue does not end in a white space character, one space will be added between it and the existing detail message (unless the detail message is not defined).

This method allows you to add more information about what went wrong that will be reported when a test fails. Here's an example:

withClue("(Employee's name was: " + employee.name + ")") {
 intercept[IllegalArgumentException] {
   employee.getTask(-1)
 }
}

If an invocation of intercept completed abruptly with an exception, the resulting message would be something like:

(Employee's name was Bob Jones) Expected IllegalArgumentException to be thrown, but no exception was thrown
Throws:
NullArgumentException

if the passed clue is null

Inherited from:
Assertions

Deprecated and Inherited methods

@deprecated("The conversionCheckedConstraint method has been deprecated and will be removed in a future version of ScalaTest. It is no longer needed now that the deprecation period of ConversionCheckedTripleEquals has expired. It will not be replaced.", "3.1.0")
override def conversionCheckedConstraint[A, B](implicit equivalenceOfA: Equivalence[A], cnv: B => A): CanEqual[A, B]
Deprecated
Definition Classes
TripleEquals -> TripleEqualsSupport
Inherited from:
TripleEquals
@deprecated("The convertEquivalenceToAToBConversionConstraint method has been deprecated and will be removed in a future version of ScalaTest. It is no longer needed now that the deprecation period of ConversionCheckedTripleEquals has expired. It will not be replaced.", "3.1.0")
override def convertEquivalenceToAToBConversionConstraint[A, B](equivalenceOfB: Equivalence[B])(implicit ev: A => B): CanEqual[A, B]
Deprecated
Definition Classes
TripleEquals -> TripleEqualsSupport
Inherited from:
TripleEquals
@deprecated("The convertEquivalenceToBToAConversionConstraint method has been deprecated and will be removed in a future version of ScalaTest. It is no longer needed now that the deprecation period of ConversionCheckedTripleEquals has expired. It will not be replaced.", "3.1.0")
override def convertEquivalenceToBToAConversionConstraint[A, B](equivalenceOfA: Equivalence[A])(implicit ev: B => A): CanEqual[A, B]
Deprecated
Definition Classes
TripleEquals -> TripleEqualsSupport
Inherited from:
TripleEquals
@deprecated("The lowPriorityConversionCheckedConstraint method has been deprecated and will be removed in a future version of ScalaTest. It is no longer needed now that the deprecation period of ConversionCheckedTripleEquals has expired. It will not be replaced.", "3.1.0")
override def lowPriorityConversionCheckedConstraint[A, B](implicit equivalenceOfB: Equivalence[B], cnv: A => B): CanEqual[A, B]
Deprecated
Definition Classes
TripleEquals -> TripleEqualsSupport
Inherited from:
TripleEquals
@deprecated("The trap method is no longer needed for demos in the REPL, which now abreviates stack traces, and will be removed in a future version of ScalaTest")
def trap[T](f: => T): Throwable

Trap and return any thrown exception that would normally cause a ScalaTest test to fail, or create and return a new RuntimeException indicating no exception is thrown.

Trap and return any thrown exception that would normally cause a ScalaTest test to fail, or create and return a new RuntimeException indicating no exception is thrown.

This method is intended to be used in the Scala interpreter to eliminate large stack traces when trying out ScalaTest assertions and matcher expressions. It is not intended to be used in regular test code. If you want to ensure that a bit of code throws an expected exception, use intercept, not trap. Here's an example interpreter session without trap:

scala> import org.scalatest._
import org.scalatest._

scala> import Matchers._
import Matchers._

scala> val x = 12
a: Int = 12

scala> x shouldEqual 13
org.scalatest.exceptions.TestFailedException: 12 did not equal 13
  at org.scalatest.Assertions$class.newAssertionFailedException(Assertions.scala:449)
  at org.scalatest.Assertions$.newAssertionFailedException(Assertions.scala:1203)
  at org.scalatest.Assertions$AssertionsHelper.macroAssertTrue(Assertions.scala:417)
  at .<init>(<console>:15)
  at .<clinit>(<console>)
  at .<init>(<console>:7)
  at .<clinit>(<console>)
  at $print(<console>)
  at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
  at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
  at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
  at java.lang.reflect.Method.invoke(Method.java:597)
  at scala.tools.nsc.interpreter.IMain$ReadEvalPrint.call(IMain.scala:731)
  at scala.tools.nsc.interpreter.IMain$Request.loadAndRun(IMain.scala:980)
  at scala.tools.nsc.interpreter.IMain.loadAndRunReq$1(IMain.scala:570)
  at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:601)
  at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:565)
  at scala.tools.nsc.interpreter.ILoop.reallyInterpret$1(ILoop.scala:745)
  at scala.tools.nsc.interpreter.ILoop.interpretStartingWith(ILoop.scala:790)
  at scala.tools.nsc.interpreter.ILoop.command(ILoop.scala:702)
  at scala.tools.nsc.interpreter.ILoop.processLine$1(ILoop.scala:566)
  at scala.tools.nsc.interpreter.ILoop.innerLoop$1(ILoop.scala:573)
  at scala.tools.nsc.interpreter.ILoop.loop(ILoop.scala:576)
  at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply$mcZ$sp(ILoop.scala:867)
  at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:822)
  at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:822)
  at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135)
  at scala.tools.nsc.interpreter.ILoop.process(ILoop.scala:822)
  at scala.tools.nsc.MainGenericRunner.runTarget$1(MainGenericRunner.scala:83)
  at scala.tools.nsc.MainGenericRunner.process(MainGenericRunner.scala:96)
  at scala.tools.nsc.MainGenericRunner$.main(MainGenericRunner.scala:105)
  at scala.tools.nsc.MainGenericRunner.main(MainGenericRunner.scala)

That's a pretty tall stack trace. Here's what it looks like when you use trap:

scala> trap { x shouldEqual 13 }
res1: Throwable = org.scalatest.exceptions.TestFailedException: 12 did not equal 13

Much less clutter. Bear in mind, however, that if no exception is thrown by the passed block of code, the trap method will create a new NormalResult (a subclass of Throwable made for this purpose only) and return that. If the result was the Unit value, it will simply say that no exception was thrown:

scala> trap { x shouldEqual 12 }
res2: Throwable = No exception was thrown.

If the passed block of code results in a value other than Unit, the NormalResult's toString will print the value:

scala> trap { "Dude!" }
res3: Throwable = No exception was thrown. Instead, result was: "Dude!"

Although you can access the result value from the NormalResult, its type is Any and therefore not very convenient to use. It is not intended that trap be used in test code. The sole intended use case for trap is decluttering Scala interpreter sessions by eliminating stack traces when executing assertion and matcher expressions.

Deprecated
Inherited from:
Assertions

Inherited fields

val a: AWord

This field enables the following syntax:

This field enables the following syntax:

badBook should not be a ('goodRead)
                     ^
Inherited from:
Matchers

This field enables syntax such as the following:

This field enables syntax such as the following:

result should equal ("hello") (after being lowerCased)
                              ^
Inherited from:
Explicitly
val an: AnWord

This field enables the following syntax:

This field enables the following syntax:

badBook should not be an (excellentRead)
                     ^
Inherited from:
Matchers
val be: BeWord

This field enables syntax such as the following:

This field enables syntax such as the following:

obj should (be theSameInstanceAs (string) and be theSameInstanceAs (string))
           ^
Inherited from:
MatcherWords
val compile: CompileWord

This field enables the following syntax:

This field enables the following syntax:


"val a: String = 1" shouldNot compile
                             ^
Inherited from:
MatcherWords
val contain: ContainWord

This field enables syntax such as the following:

This field enables syntax such as the following:

list should (contain ('a') and have length (7))
            ^
Inherited from:
MatcherWords

This field enables syntax such as the following:

This field enables syntax such as the following:

result should equal ("hello") (decided by defaultEquality)
                              ^
Inherited from:
Explicitly
val defined: DefinedWord

This field enables the following syntax:

This field enables the following syntax:

seq should be (defined)
             ^
Inherited from:
MatcherWords

This field enables syntax such as the following, given an Equivalence[String] named myStringEquivalence:

This field enables syntax such as the following, given an Equivalence[String] named myStringEquivalence:

result should equal ("hello") (determined by myStringEquivalence)
                              ^
Inherited from:
Explicitly
val empty: EmptyWord

This field enables the following syntax:

This field enables the following syntax:


list should be (empty)
               ^
Inherited from:
MatcherWords
val endWith: EndWithWord

This field enables syntax such as the following:

This field enables syntax such as the following:

string should (endWith ("ago") and include ("score"))
              ^
Inherited from:
MatcherWords
val exist: ExistWord

This field enables the following syntax:

This field enables the following syntax:

file should exist
           ^
Inherited from:
MatcherWords
val fullyMatch: FullyMatchWord

This field enables syntax such as the following:

This field enables syntax such as the following:

string should (fullyMatch regex ("Hel*o, wor.d") and not have length (99))
              ^
Inherited from:
MatcherWords
val have: HaveWord

This field enables syntax such as the following:

This field enables syntax such as the following:

list should (have length (3) and not contain ('a'))
            ^
Inherited from:
MatcherWords
val include: IncludeWord

This field enables syntax such as the following:

This field enables syntax such as the following:

string should (include ("hope") and not startWith ("no"))
              ^
Inherited from:
MatcherWords

This field enables the following syntax:

This field enables the following syntax:

map should not contain key (10)
                      ^
Inherited from:
Matchers
val length: LengthWord

This field enables the following syntax:

This field enables the following syntax:

"hi" should not have length (3)
                    ^
Inherited from:
MatcherWords
val matchPattern: MatchPatternWord

This field enables the following syntax:

This field enables the following syntax:


result should matchPattern { case Person("Bob", _) => }
             ^
Inherited from:
MatcherWords
val not: NotWord

This field enables syntax like the following:

This field enables syntax like the following:

myFile should (not be an (directory) and not have ('name ("foo.bar")))
              ^
Inherited from:
MatcherWords
final val pipeChar: '|'
Inherited from:
Assertions
val readable: ReadableWord

This field enables the following syntax:

This field enables the following syntax:


file should be (readable)
               ^
Inherited from:
MatcherWords

This field enables the following syntax:

This field enables the following syntax:

"eight" should not fullyMatch regex ("""(-)?(\d+)(\.\d*)?""".r)
                             ^
Inherited from:
Matchers
val size: SizeWord

This field enables the following syntax:

This field enables the following syntax:

set should not have size (3)
                   ^
Inherited from:
MatcherWords
val sorted: SortedWord

This field enables the following syntax:

This field enables the following syntax:

seq should be (sorted)
             ^
Inherited from:
MatcherWords
val startWith: StartWithWord

This field enables syntax such as the following:

This field enables syntax such as the following:

string should (startWith ("Four") and include ("year"))
              ^
Inherited from:
MatcherWords
final val succeed: Assertion

The Succeeded singleton.

The Succeeded singleton.

You can use succeed to solve a type error when an async test does not end in either Future[Assertion] or Assertion. Because Assertion is a type alias for Succeeded.type, putting succeed at the end of a test body (or at the end of a function being used to map the final future of a test body) will solve the type error.

Inherited from:
Assertions

This field enables the following syntax:

This field enables the following syntax:

oneString should not be theSameInstanceAs (anotherString)
                       ^
Inherited from:
Matchers
val typeCheck: TypeCheckWord

This field enables the following syntax:

This field enables the following syntax:


"val a: String = 1" shouldNot typeCheck
                             ^
Inherited from:
MatcherWords

This field enables the following syntax:

This field enables the following syntax:

map should not contain value (10)
                      ^
Inherited from:
Matchers
val writable: WritableWord

This field enables the following syntax:

This field enables the following syntax:

file should be (writable)
               ^
Inherited from:
MatcherWords

Extensions

Inherited extensions

extension (leftSideString: String)
def should(using pos: Position, prettifier: Prettifier)(fullyMatchWord: FullyMatchWord): ResultOfFullyMatchWordForString

This method enables syntax such as the following:

This method enables syntax such as the following:

string should fullyMatch regex ("""(-)?(\d+)(\.\d*)?""")
      ^
Inherited from:
Matchers
extension (leftSideString: String)
def withGroups(using pos: Position, prettifier: Prettifier)(groups: String*): RegexWithGroups

This method enables syntax such as the following:

This method enables syntax such as the following:

string should fullyMatch regex ("a(b*)(c*)" withGroups ("bb", "cc"))
                                           ^
Inherited from:
Matchers
extension (leftSideString: String)
def shouldNot(using pos: Position, prettifier: Prettifier)(fullyMatchWord: FullyMatchWord): ResultOfFullyMatchWordForString

This method enables syntax such as the following:

This method enables syntax such as the following:

string shouldNot fullyMatch regex ("""(-)?(\d+)(\.\d*)?""")
      ^
Inherited from:
Matchers
extension (leftSideString: String)
def withGroup(using pos: Position, prettifier: Prettifier)(group: String): RegexWithGroups

This method enables syntax such as the following:

This method enables syntax such as the following:

string should fullyMatch regex ("a(b*)c" withGroup "bb")
                                        ^
Inherited from:
Matchers
extension (leftSideString: String)
transparent inline def should(using pos: Position, prettifier: Prettifier)(compileWord: CompileWord): Assertion

This method enables syntax such as the following:

This method enables syntax such as the following:

string should compile
      ^
Inherited from:
Matchers
extension (leftSideString: String)
transparent inline def shouldNot(using pos: Position, prettifier: Prettifier)(typeCheckWord: TypeCheckWord): Assertion

This method enables syntax such as the following:

This method enables syntax such as the following:

string shouldNot typeCheck
      ^
Inherited from:
Matchers
extension (leftSideString: String)
transparent inline def shouldNot(using pos: Position, prettifier: Prettifier)(compileWord: CompileWord): Assertion

This method enables syntax such as the following:

This method enables syntax such as the following:

string shouldNot compile
      ^
Inherited from:
Matchers
extension [T](leftSideValue: T)
def should(using pos: Position, prettifier: Prettifier)(startWithWord: StartWithWord)(implicit ev: T <:< String): ResultOfStartWithWordForString

This method enables syntax such as the following:

This method enables syntax such as the following:

string should startWith regex ("hello")
      ^
Inherited from:
Matchers
extension [T](leftSideValue: T)
def shouldBe(using pos: Position, prettifier: Prettifier)(comparison: ResultOfLessThanComparison[T]): Assertion

This method enables syntax such as the following:

This method enables syntax such as the following:

5 shouldBe < (7)
 ^
Inherited from:
Matchers
extension [T](leftSideValue: T)
def shouldBe(using pos: Position, prettifier: Prettifier)(symbol: Symbol)(implicit toAnyRef: T <:< AnyRef): Assertion

This method enables the following syntax:

This method enables the following syntax:

list shouldBe 'empty
    ^
Inherited from:
Matchers
extension [T](leftSideValue: T)
def shouldEqual(using pos: Position, prettifier: Prettifier)(right: Null)(implicit ev: T <:< AnyRef): Assertion

This method enables syntax such as the following:

This method enables syntax such as the following:

result shouldEqual null
      ^
Inherited from:
Matchers
extension [T, U >: T](leftSideValue: T)
def shouldBe(using pos: Position, prettifier: Prettifier)(resultOfAnWordApplication: ResultOfAnWordToBePropertyMatcherApplication[U])(implicit ev: T <:< AnyRef): Assertion

This method enables the following syntax, where excellentRead refers to a BePropertyMatcher[Book]:

This method enables the following syntax, where excellentRead refers to a BePropertyMatcher[Book]:

programmingInScala shouldBe an (excellentRead)
                  ^
Inherited from:
Matchers
extension [T](leftSideValue: T)
inline def shouldBe(using pos: Position, prettifier: Prettifier)(anType: ResultOfAnTypeInvocation[_]): Assertion

This method enables syntax such as the following:

This method enables syntax such as the following:

aDouble shouldBe an [Book]
       ^
Inherited from:
Matchers
extension [T](leftSideValue: T)
def shouldBe(using pos: Position, prettifier: Prettifier)(resultOfAWordApplication: ResultOfAWordToSymbolApplication)(implicit toAnyRef: T <:< AnyRef): Assertion

This method enables the following syntax:

This method enables the following syntax:

list shouldBe a ('empty)
    ^
Inherited from:
Matchers
extension [T](leftSideValue: T)
def shouldBe(using pos: Position, prettifier: Prettifier)(resultOfSameInstanceAsApplication: ResultOfTheSameInstanceAsApplication)(implicit toAnyRef: T <:< AnyRef): Assertion

This method enables syntax such as the following:

This method enables syntax such as the following:

result shouldBe theSameInstanceAs (anotherObject)
      ^
Inherited from:
Matchers
extension [T](leftSideValue: T)
def shouldBe(using pos: Position, prettifier: Prettifier)(bePropertyMatcher: BePropertyMatcher[T])(implicit ev: T <:< AnyRef): Assertion

This method enables the following syntax, where excellentRead refers to a BePropertyMatcher[Book]:

This method enables the following syntax, where excellentRead refers to a BePropertyMatcher[Book]:

programmingInScala shouldBe excellentRead
                  ^
Inherited from:
Matchers
extension [T](leftSideValue: T)
def should(using pos: Position, prettifier: Prettifier)(inv: TripleEqualsInvocationOnSpread[T])(implicit ev: Numeric[T]): Assertion

This method enables syntax such as the following:

This method enables syntax such as the following:

result should === (100 +- 1)
      ^
Inherited from:
Matchers
extension [T](leftSideValue: T)
def shouldNot(using pos: Position, prettifier: Prettifier)(contain: ContainWord): ResultOfContainWord[T]

This method enables syntax such as the following:

This method enables syntax such as the following:

xs shouldNot contain (oneOf (1, 2, 3))
  ^
Inherited from:
Matchers
extension [T](leftSideValue: T)
def should(using pos: Position, prettifier: Prettifier)(haveWord: HaveWord): ResultOfHaveWordForExtent[T]

This method enables syntax such as the following:

This method enables syntax such as the following:

result should have length (3)
      ^
result should have size (3)
      ^
Inherited from:
Matchers
extension [T, TYPECLASS1[_]](leftSideValue: T)
def shouldNot(using pos: Position, prettifier: Prettifier)(rightMatcherFactory1: MatcherFactory1[T, TYPECLASS1])(implicit typeClass1: TYPECLASS1[T]): Assertion

This method enables syntax such as the following:

This method enables syntax such as the following:

result shouldNot (be readable)
      ^
Inherited from:
Matchers
extension [T, R](leftSideValue: T)
def shouldBe(using pos: Position, prettifier: Prettifier)(right: R)(implicit caneq: CanEqual[T, R]): Assertion

This method enables syntax such as the following:

This method enables syntax such as the following:

aDouble shouldBe 8.8
       ^
Inherited from:
Matchers
extension [T](leftSideValue: T)
def shouldNot(using pos: Position, prettifier: Prettifier)(endWithWord: EndWithWord)(implicit ev: T <:< String): ResultOfEndWithWordForString

This method enables syntax such as the following:

This method enables syntax such as the following:

string shouldNot endWith regex ("world")
      ^
Inherited from:
Matchers
extension [T](leftSideValue: T)
def shouldBe(using pos: Position, prettifier: Prettifier)(right: DefinedWord)(implicit definition: Definition[T]): Assertion

This method enables syntax such as the following:

This method enables syntax such as the following:

result shouldBe defined
      ^
Inherited from:
Matchers
extension [T](leftSideValue: T)
def shouldBe(using pos: Position, prettifier: Prettifier)(right: ReadableWord)(implicit readability: Readability[T]): Assertion

This method enables syntax such as the following:

This method enables syntax such as the following:

result shouldBe readable
      ^
Inherited from:
Matchers
extension [T](leftSideValue: T)
def should(using pos: Position, prettifier: Prettifier)(notWord: NotWord): ResultOfNotWordForAny[T]

This method enables syntax such as the following:

This method enables syntax such as the following:

result should not equal (3)
      ^
Inherited from:
Matchers
extension [T](leftSideValue: T)
def shouldBe(using pos: Position, prettifier: Prettifier)(comparison: ResultOfGreaterThanComparison[T]): Assertion

This method enables syntax such as the following:

This method enables syntax such as the following:

8 shouldBe > (7)
 ^
Inherited from:
Matchers
extension [T](leftSideValue: T)
def shouldEqual(using pos: Position, prettifier: Prettifier)(right: Any)(implicit equality: Equality[T]): Assertion

This method enables syntax such as the following:

This method enables syntax such as the following:

a shouldEqual b
 ^
Inherited from:
Matchers
extension [T](leftSideValue: T)
def shouldBe(using pos: Position, prettifier: Prettifier)(comparison: ResultOfLessThanOrEqualToComparison[T]): Assertion

This method enables syntax such as the following:

This method enables syntax such as the following:

5 shouldBe <= (7)
 ^
Inherited from:
Matchers
extension [T](leftSideValue: T)
def shouldNot(using pos: Position, prettifier: Prettifier)(rightMatcherX1: Matcher[T]): Assertion

This method enables syntax such as the following:

This method enables syntax such as the following:

result shouldNot (be (3))
      ^
Inherited from:
Matchers
extension [T](leftSideValue: T)
def shouldBe(using pos: Position, prettifier: Prettifier)(right: SortedWord)(implicit sortable: Sortable[T]): Assertion

This method enables syntax such as the following:

This method enables syntax such as the following:

result shouldBe sorted
      ^
Inherited from:
Matchers
extension [T, TYPECLASS1[_]](leftSideValue: T)
def should(using pos: Position, prettifier: Prettifier)(rightMatcherFactory1: MatcherFactory1[T, TYPECLASS1])(implicit typeClass1: TYPECLASS1[T]): Assertion

This method enables syntax such as the following:

This method enables syntax such as the following:

result should equal (3)
      ^
Inherited from:
Matchers
extension [T](leftSideValue: T)
def should(using pos: Position, prettifier: Prettifier)(endWithWord: EndWithWord)(implicit ev: T <:< String): ResultOfEndWithWordForString

This method enables syntax such as the following:

This method enables syntax such as the following:

string should endWith regex ("world")
      ^
Inherited from:
Matchers
extension [T, U](leftSideValue: T)
def should(using pos: Position, prettifier: Prettifier)(inv: TripleEqualsInvocation[U])(implicit constraint: CanEqual[T, U]): Assertion

This method enables syntax such as the following:

This method enables syntax such as the following:

a should === (b)
      ^
Inherited from:
Matchers
extension [T](leftSideValue: T)
def shouldBe(using pos: Position, prettifier: Prettifier)(beMatcher: BeMatcher[T]): Assertion

This method enables the following syntax, where odd refers to a BeMatcher[Int]:

This method enables the following syntax, where odd refers to a BeMatcher[Int]:

testing
1 shouldBe odd
 ^
Inherited from:
Matchers
extension [T](leftSideValue: T)
def shouldNot(using pos: Position, prettifier: Prettifier)(startWithWord: StartWithWord)(implicit ev: T <:< String): ResultOfStartWithWordForString

This method enables syntax such as the following:

This method enables syntax such as the following:

string shouldNot startWith regex ("hello")
      ^
Inherited from:
Matchers
extension [T](leftSideValue: T)
def shouldBe(using pos: Position, prettifier: Prettifier)(comparison: ResultOfGreaterThanOrEqualToComparison[T]): Assertion

This method enables syntax such as the following:

This method enables syntax such as the following:

8 shouldBe >= (7)
 ^
Inherited from:
Matchers
extension [T, U >: T](leftSideValue: T)
def shouldBe(using pos: Position, prettifier: Prettifier)(resultOfAWordApplication: ResultOfAWordToBePropertyMatcherApplication[U])(implicit ev: T <:< AnyRef): Assertion

This method enables the following syntax, where goodRead refers to a BePropertyMatcher[Book]:

This method enables the following syntax, where goodRead refers to a BePropertyMatcher[Book]:

programmingInScala shouldBe a (goodRead)
                  ^
Inherited from:
Matchers
extension [T](leftSideValue: T)
def shouldBe(using pos: Position, prettifier: Prettifier)(resultOfAnWordApplication: ResultOfAnWordToSymbolApplication)(implicit toAnyRef: T <:< AnyRef): Assertion

This method enables the following syntax:

This method enables the following syntax:

list shouldBe an ('empty)
    ^
Inherited from:
Matchers
extension [T](leftSideValue: T)
def shouldBe(using pos: Position, prettifier: Prettifier)(spread: Spread[T]): Assertion

This method enables syntax such as the following:

This method enables syntax such as the following:

result shouldBe 7.1 +- 0.2
      ^
Inherited from:
Matchers
extension [T](leftSideValue: T)
def should(using pos: Position, prettifier: Prettifier)(containWord: ContainWord): ResultOfContainWord[T]

This method enables syntax such as the following:

This method enables syntax such as the following:

xs should contain oneOf (1, 2, 3)
  ^
Inherited from:
Matchers
extension [T](leftSideValue: T)
def should(using pos: Position, prettifier: Prettifier)(existWord: ExistWord)(implicit existence: Existence[T]): Assertion

This method enables syntax such as the following:

This method enables syntax such as the following:

file should exist
    ^
Inherited from:
Matchers
extension [T](leftSideValue: T)
inline def shouldBe(using pos: Position, prettifier: Prettifier)(aType: ResultOfATypeInvocation[_]): Assertion

This method enables syntax such as the following:

This method enables syntax such as the following:

aDouble shouldBe a [Book]
       ^
Inherited from:
Matchers
extension [T](leftSideValue: T)
def shouldNot(using pos: Position, prettifier: Prettifier)(includeWord: IncludeWord)(implicit ev: T <:< String): ResultOfIncludeWordForString

This method enables syntax such as the following:

This method enables syntax such as the following:

string shouldNot include regex ("hi")
      ^
Inherited from:
Matchers
extension [T](leftSideValue: T)
def shouldBe(using pos: Position, prettifier: Prettifier)(right: WritableWord)(implicit writability: Writability[T]): Assertion

This method enables syntax such as the following:

This method enables syntax such as the following:

result shouldBe writable
      ^
Inherited from:
Matchers
extension [T](leftSideValue: T)
def shouldBe(using pos: Position, prettifier: Prettifier)(right: Null)(implicit ev: T <:< AnyRef): Assertion

This method enables syntax such as the following:

This method enables syntax such as the following:

result shouldBe null
      ^
Inherited from:
Matchers
extension [T](leftSideValue: T)
def shouldNot(using pos: Position, prettifier: Prettifier)(existWord: ExistWord)(implicit existence: Existence[T]): Assertion

This method enables syntax such as the following:

This method enables syntax such as the following:

file shouldNot exist
    ^
Inherited from:
Matchers
extension [T](leftSideValue: T)
def shouldNot(using pos: Position, prettifier: Prettifier)(haveWord: HaveWord): ResultOfHaveWordForExtent[T]

This method enables syntax such as the following:

This method enables syntax such as the following:

result shouldNot have length (3)
      ^
result shouldNot have size (3)
      ^
exception shouldNot have message ("file not found")
         ^
Inherited from:
Matchers
extension [T](leftSideValue: T)
def shouldEqual(using pos: Position, prettifier: Prettifier)(spread: Spread[T]): Assertion

This method enables syntax such as the following:

This method enables syntax such as the following:

result shouldEqual 7.1 +- 0.2
      ^
Inherited from:
Matchers
extension [T](leftSideValue: T)
def shouldNot(using pos: Position, prettifier: Prettifier)(beWord: BeWord): ResultOfBeWordForAny[T]

This method enables syntax such as the following:

This method enables syntax such as the following:

result shouldNot be (3)
      ^
Inherited from:
Matchers
extension [T](leftSideValue: T)
def should(using pos: Position, prettifier: Prettifier)(notExist: ResultOfNotExist)(implicit existence: Existence[T]): Assertion

This method enables syntax such as the following:

This method enables syntax such as the following:

file should not (exist)
    ^
Inherited from:
Matchers
extension [T, TYPECLASS1[_], TYPECLASS2[_]](leftSideValue: T)
def should(using pos: Position, prettifier: Prettifier)(rightMatcherFactory2: MatcherFactory2[T, TYPECLASS1, TYPECLASS2])(implicit typeClass1: TYPECLASS1[T], typeClass2: TYPECLASS2[T]): Assertion

This method enables syntax such as the following:

This method enables syntax such as the following:

result should (equal (expected) and have length 3)
      ^
Inherited from:
Matchers
extension [T](leftSideValue: T)
def should(using pos: Position, prettifier: Prettifier)(beWord: BeWord): ResultOfBeWordForAny[T]

This method enables syntax such as the following:

This method enables syntax such as the following:

result should be a aMatcher
      ^
Inherited from:
Matchers
extension [T](leftSideValue: T)
def should(using pos: Position, prettifier: Prettifier)(includeWord: IncludeWord)(implicit ev: T <:< String): ResultOfIncludeWordForString

This method enables syntax such as the following:

This method enables syntax such as the following:

string should include regex ("hi")
      ^
Inherited from:
Matchers
extension [T](leftSideValue: T)
def shouldBe(using pos: Position, prettifier: Prettifier)(right: EmptyWord)(implicit emptiness: Emptiness[T]): Assertion

This method enables syntax such as the following:

This method enables syntax such as the following:

result shouldBe empty
      ^
Inherited from:
Matchers
extension [T](leftSideValue: T)
def should(using pos: Position, prettifier: Prettifier)(rightMatcherX1: Matcher[T]): Assertion

This method enables syntax such as the following:

This method enables syntax such as the following:

result should be (3)
      ^
Inherited from:
Matchers
extension (regex: Regex)
def withGroup(group: String): RegexWithGroups

This method enables syntax such as the following:

This method enables syntax such as the following:

regex should fullyMatch regex ("a(b*)c" withGroup "bb")
                                       ^
Inherited from:
Matchers
extension (regex: Regex)
def withGroups(groups: String*): RegexWithGroups

This method enables syntax such as the following:

This method enables syntax such as the following:

regex should fullyMatch regex ("a(b*)(c*)" withGroups ("bb", "cc"))
                                          ^
Inherited from:
Matchers
extension (x: String)
inline def stripMargin(c: Char): String
Inherited from:
Assertions
extension (x: String)
inline def stripMargin: String
Inherited from:
Assertions

Implicits

Inherited implicits

implicit def convertNumericToPlusOrMinusWrapper[T : Numeric](pivot: T): PlusOrMinusWrapper[T]

Implicitly converts an object of a Numeric type to a PlusOrMinusWrapper, to enable a +- method to be invoked on that object.

Implicitly converts an object of a Numeric type to a PlusOrMinusWrapper, to enable a +- method to be invoked on that object.

Inherited from:
Tolerance
implicit def convertSymbolToHavePropertyMatcherGenerator(symbol: Symbol)(implicit prettifier: Prettifier, pos: Position): HavePropertyMatcherGenerator

This implicit conversion method converts a Symbol to a HavePropertyMatcherGenerator, to enable the symbol to be used with the have ('author ("Dickens")) syntax.

This implicit conversion method converts a Symbol to a HavePropertyMatcherGenerator, to enable the symbol to be used with the have ('author ("Dickens")) syntax.

Inherited from:
Matchers
implicit override def convertToEqualizer[T](left: T): Equalizer[T]
Definition Classes
TripleEquals -> TripleEqualsSupport
Inherited from:
TripleEquals
implicit def convertToStringShouldWrapperForVerb(o: String)(implicit position: Position): StringShouldWrapperForVerb

Implicitly converts an object of type String to a StringShouldWrapperForVerb, to enable should methods to be invokable on that object.

Implicitly converts an object of type String to a StringShouldWrapperForVerb, to enable should methods to be invokable on that object.

Inherited from:
ShouldVerb
implicit override def unconstrainedEquality[A, B](implicit equalityOfA: Equality[A]): CanEqual[A, B]
Definition Classes
TripleEquals -> TripleEqualsSupport
Inherited from:
TripleEquals