object Symbolic extends LowPrioritySymbolic
There are two ways to convert a value to Layer.
The first way is invoke toLayer, such as:
def createMyNeuralNetwork(implicit input: Float @Symbolic): Float @Symbolic = { val floatLayer: Float @Symbolic = 1.0f.toLayer floatLayer }
The second way is autoToLayer, such as:
def createMyNeuralNetwork(implicit input: Float @Symbolic): Float @Symbolic = { val floatLayer: Float @Symbolic = 1.0f floatLayer }
In order to compile the above code through, you will need:
import com.thoughtworks.deeplearning.Symbolic._ import com.thoughtworks.deeplearning.Symbolic import com.thoughtworks.deeplearning.DifferentiableFloat._
- Alphabetic
- By Inheritance
- Symbolic
- LowPrioritySymbolic
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Type Members
-
trait
ToLayer
[From, Input <: Tape] extends DepFn1[From]
Author:
杨博 (Yang Bo) <[email protected]>
- Annotations
- @implicitNotFound( "Cannot convert ${From} to layer" )
- implicit final class ToLayerOps [From, Input <: Tape, OutputData, OutputDelta] extends AnyRef
- trait ToLiteral [From] extends DepFn1[From]
- implicit final class ToTapeOps [From, Data, Delta] extends AnyRef
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
- implicit def autoToLayer[A, Input <: Tape, OutputData, OutputDelta](a: A)(implicit toLayer: Aux[A, Input, OutputData, OutputDelta]): Aux[Input, Aux[OutputData, OutputDelta]]
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
implicit
def
from[NativeOutput, Data0, Delta0](implicit toLiteral: Lazy[Aux[NativeOutput, Data0, Delta0]]): Aux[NativeOutput, Data0, Delta0]
- Definition Classes
- LowPrioritySymbolic
- implicit def fromTo[NativeInput, NativeOutput, InputData0, InputDelta0, OutputData0, OutputDelta0](implicit inputToLiteral: Lazy[Aux[NativeInput, InputData0, InputDelta0]], outputToLiteral: Lazy[Aux[NativeOutput, OutputData0, OutputDelta0]]): Aux[NativeInput, NativeOutput, InputData0, InputDelta0, OutputData0, OutputDelta0]
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
- implicit def to[NativeOutput, InputData0, InputDelta0, OutputData0, OutputDelta0](implicit inputPlaceHolder: Identity[InputData0, InputDelta0], toLiteral: Aux[NativeOutput, OutputData0, OutputDelta0]): Aux[NativeOutput, InputData0, InputDelta0, OutputData0, OutputDelta0]
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
- object Layers
- object ToLayer extends ToLayerLowPriorityImplicits
- object ToLiteral