Packages

trait Integer[A <: Data] extends Real[A] with IsIntegral[A]

Much of this is drawn from non/spire, but using Chisel Bools instead of Java Bools. I suppose a more general solution would be generic in return type, but the use cases there seem obscure.

Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Integer
  2. IsIntegral
  3. Real
  4. IsReal
  5. Signed
  6. Order
  7. PartialOrder
  8. Eq
  9. ConvertableTo
  10. ConvertableTo
  11. Ring
  12. Ring
  13. Rng
  14. AdditiveCommutativeGroup
  15. AdditiveGroup
  16. Rig
  17. MultiplicativeMonoid
  18. Semiring
  19. MultiplicativeSemigroup
  20. AdditiveCommutativeMonoid
  21. AdditiveCommutativeSemigroup
  22. AdditiveMonoid
  23. AdditiveSemigroup
  24. Serializable
  25. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. Protected

Abstract Value Members

  1. abstract def abs(a: A): A

    An idempotent function that ensures an object has a non-negative sign.

    An idempotent function that ensures an object has a non-negative sign.

    Definition Classes
    Signed
  2. abstract def compare(x: A, y: A): ComparisonBundle
    Definition Classes
    Order
  3. abstract def context_abs(a: A): A
    Definition Classes
    Signed
  4. abstract def fromBigDecimal(n: BigDecimal): A
    Definition Classes
    ConvertableTo
  5. abstract def fromByte(n: Byte): A
    Definition Classes
    ConvertableTo
  6. abstract def fromDouble(d: Double, a: A): A
    Definition Classes
    ConvertableTo
  7. abstract def fromDouble(n: Double): A
    Definition Classes
    ConvertableTo
  8. abstract def fromDoubleWithFixedWidth(d: Double, a: A): A
    Definition Classes
    ConvertableTo
  9. abstract def fromFloat(n: Float): A
    Definition Classes
    ConvertableTo
  10. abstract def fromLong(n: Long): A
    Definition Classes
    ConvertableTo
  11. abstract def fromShort(n: Short): A
    Definition Classes
    ConvertableTo
  12. abstract def fromType[B](b: B)(implicit arg0: spire.math.ConvertableFrom[B]): A
    Definition Classes
    ConvertableTo
  13. abstract def getClass(): Class[_ <: AnyRef]
    Definition Classes
    Any
  14. abstract def isOdd(a: A): Bool
    Definition Classes
    IsIntegral
  15. abstract def minusContext(f: A, g: A): A
    Definition Classes
    Ring
  16. abstract def mod(a: A, b: A): A
    Definition Classes
    IsIntegral
  17. abstract def negate(x: A): A
    Definition Classes
    AdditiveGroup
  18. abstract def negateContext(f: A): A
    Definition Classes
    Ring
  19. abstract def one: A
    Definition Classes
    MultiplicativeMonoid
  20. abstract def plus(x: A, y: A): A
    Definition Classes
    AdditiveSemigroup
  21. abstract def plusContext(f: A, g: A): A
    Definition Classes
    Ring
  22. abstract def signum(a: A): ComparisonBundle

    Returns 0 if a is 0, > 0 if a is positive, and < 0 is a is negative.

    Returns 0 if a is 0, > 0 if a is positive, and < 0 is a is negative.

    Definition Classes
    Signed
  23. abstract def times(x: A, y: A): A
    Definition Classes
    MultiplicativeSemigroup
  24. abstract def timesContext(f: A, g: A): A
    Definition Classes
    Ring
  25. abstract def zero: A
    Definition Classes
    AdditiveMonoid

Concrete Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    Any
  2. final def ##: Int
    Definition Classes
    Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    Any
  4. def additive: CommutativeGroup[A]
    Definition Classes
    AdditiveCommutativeGroup → AdditiveCommutativeMonoid → AdditiveCommutativeSemigroup → AdditiveGroup → AdditiveMonoid → AdditiveSemigroup
  5. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  6. def ceil(a: A): A

    Rounds a the nearest integer that is greater than or equal to a.

    Rounds a the nearest integer that is greater than or equal to a.

    Definition Classes
    IsIntegralIsReal
  7. def equals(arg0: Any): Boolean
    Definition Classes
    Any
  8. def eqv(x: A, y: A): Bool

    Returns true if x and y are equivalent, false otherwise.

    Returns true if x and y are equivalent, false otherwise.

    Definition Classes
    OrderPartialOrderEq
  9. def floor(a: A): A

    Rounds a the nearest integer that is less than or equal to a.

    Rounds a the nearest integer that is less than or equal to a.

    Definition Classes
    IsIntegralIsReal
  10. def fromAlgebraic(a: Algebraic): A
    Definition Classes
    Real → ConvertableTo
  11. def fromBigInt(n: BigInt): A
    Definition Classes
    Ring
  12. def fromInt(n: Int): A
    Definition Classes
    Ring
  13. def fromRational(a: Rational): A
    Definition Classes
    Real → ConvertableTo
  14. def fromReal(a: spire.math.Real): A
    Definition Classes
    Real → ConvertableTo
  15. def gt(x: A, y: A): Bool
    Definition Classes
    OrderPartialOrder
  16. def gteqv(x: A, y: A): Bool
    Definition Classes
    OrderPartialOrder
  17. def hashCode(): Int
    Definition Classes
    Any
  18. def isEven(a: A): Bool
    Definition Classes
    IsIntegral
  19. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  20. def isOne(a: A)(implicit ev: algebra.Eq[A]): Boolean
    Definition Classes
    MultiplicativeMonoid
  21. def isSignNegative(a: A): Bool
    Definition Classes
    Signed
  22. def isSignNonNegative(a: A): Bool
    Definition Classes
    Signed
  23. def isSignNonPositive(a: A): Bool
    Definition Classes
    Signed
  24. def isSignNonZero(a: A): Bool
    Definition Classes
    Signed
  25. def isSignPositive(a: A): Bool
    Definition Classes
    Signed
  26. def isSignZero(a: A): Bool
    Definition Classes
    Signed
  27. def isWhole(a: A): Bool

    Returns true iff a is a an integer.

    Returns true iff a is a an integer.

    Definition Classes
    IsIntegralIsReal
  28. def isZero(a: A)(implicit ev: algebra.Eq[A]): Boolean
    Definition Classes
    AdditiveMonoid
  29. def lt(x: A, y: A): Bool
    Definition Classes
    OrderPartialOrder
  30. def lteqv(x: A, y: A): Bool
    Definition Classes
    OrderPartialOrder
  31. def max(x: A, y: A): A
    Definition Classes
    Order
  32. def min(x: A, y: A): A
    Definition Classes
    Order
  33. def minus(x: A, y: A): A
    Definition Classes
    AdditiveGroup
  34. def multiplicative: Monoid[A]
    Definition Classes
    MultiplicativeMonoid → MultiplicativeSemigroup
  35. def neqv(x: A, y: A): Bool

    Returns false if x and y are equivalent, true otherwise.

    Returns false if x and y are equivalent, true otherwise.

    Definition Classes
    Eq
  36. def on[B <: Data](f: (B) => A): Order[B]

    Defines an order on B by mapping B to A using f and using As order to order B.

    Defines an order on B by mapping B to A using f and using As order to order B.

    Definition Classes
    OrderPartialOrderEq
  37. def partialCompare(x: A, y: A): ValidIO[ComparisonBundle]

    Result of comparing x with y.

    Result of comparing x with y. Returns ValidIO[ComparisonBundle] with valid false if operands are not comparable. If operands are comparable, bits.lt will be true if x < y and bits.eq will be true if x = y

    Definition Classes
    OrderPartialOrder
  38. def pmax(x: A, y: A): ValidIO[A]

    Returns Some(x) if x >= y, Some(y) if x < y, otherwise None.

    Returns Some(x) if x >= y, Some(y) if x < y, otherwise None.

    Definition Classes
    PartialOrder
  39. def pmin(x: A, y: A): ValidIO[A]

    Returns Some(x) if x <= y, Some(y) if x > y, otherwise None.

    Returns Some(x) if x <= y, Some(y) if x > y, otherwise None.

    Definition Classes
    PartialOrder
  40. def positivePow(a: A, n: Int): A
    Attributes
    protected[this]
    Definition Classes
    MultiplicativeSemigroup
  41. def positiveSumN(a: A, n: Int): A
    Attributes
    protected[this]
    Definition Classes
    AdditiveSemigroup
  42. def pow(a: A, n: Int): A
    Definition Classes
    MultiplicativeMonoid → MultiplicativeSemigroup
  43. def product(as: TraversableOnce[A]): A
    Definition Classes
    MultiplicativeMonoid
  44. def reverse: Order[A]

    Defines an ordering on A where all arrows switch direction.

    Defines an ordering on A where all arrows switch direction.

    Definition Classes
    OrderPartialOrder
  45. def round(a: A): A

    Rounds a to the nearest integer (When the fractional part is 0.5, tie breaking rounds to positive infinity i.e.

    Rounds a to the nearest integer (When the fractional part is 0.5, tie breaking rounds to positive infinity i.e. round half up)

    Definition Classes
    IsIntegralIsReal
  46. def sign(a: A): Sign

    Returns Zero if a is 0, Positive if a is positive, and Negative is a is negative.

    Returns Zero if a is 0, Positive if a is positive, and Negative is a is negative.

    Definition Classes
    Signed
  47. def sum(as: TraversableOnce[A]): A
    Definition Classes
    AdditiveMonoid
  48. def sumN(a: A, n: Int): A
    Definition Classes
    AdditiveGroup → AdditiveMonoid → AdditiveSemigroup
  49. def toString(): String
    Definition Classes
    Any
  50. def truncate(a: A): A
    Definition Classes
    IsIntegralIsReal
  51. def tryProduct(as: TraversableOnce[A]): Option[A]
    Definition Classes
    MultiplicativeMonoid → MultiplicativeSemigroup
  52. def trySum(as: TraversableOnce[A]): Option[A]
    Definition Classes
    AdditiveMonoid → AdditiveSemigroup

Inherited from IsIntegral[A]

Inherited from Real[A]

Inherited from IsReal[A]

Inherited from Signed[A]

Inherited from Order[A]

Inherited from PartialOrder[A]

Inherited from Eq[A]

Inherited from ConvertableTo[A]

Inherited from spire.math.ConvertableTo[A]

Inherited from Ring[A]

Inherited from algebra.ring.Ring[A]

Inherited from Rng[A]

Inherited from AdditiveCommutativeGroup[A]

Inherited from algebra.ring.AdditiveGroup[A]

Inherited from Rig[A]

Inherited from MultiplicativeMonoid[A]

Inherited from Semiring[A]

Inherited from MultiplicativeSemigroup[A]

Inherited from AdditiveCommutativeMonoid[A]

Inherited from AdditiveMonoid[A]

Inherited from AdditiveSemigroup[A]

Inherited from Serializable

Inherited from Any

Ungrouped