trait Integer[A <: Data] extends Real[A] with IsIntegral[A]
Much of this is drawn from non/spire, but using Chisel Bools instead of Java Bools. I suppose a more general solution would be generic in return type, but the use cases there seem obscure.
- Alphabetic
- By Inheritance
- Integer
- IsIntegral
- Real
- IsReal
- Signed
- Order
- PartialOrder
- Eq
- ConvertableTo
- ConvertableTo
- Ring
- Ring
- Rng
- AdditiveCommutativeGroup
- AdditiveGroup
- Rig
- MultiplicativeMonoid
- Semiring
- MultiplicativeSemigroup
- AdditiveCommutativeMonoid
- AdditiveCommutativeSemigroup
- AdditiveMonoid
- AdditiveSemigroup
- Serializable
- Any
- Hide All
- Show All
- Public
- Protected
Abstract Value Members
- abstract def abs(a: A): A
An idempotent function that ensures an object has a non-negative sign.
An idempotent function that ensures an object has a non-negative sign.
- Definition Classes
- Signed
- abstract def compare(x: A, y: A): ComparisonBundle
- Definition Classes
- Order
- abstract def context_abs(a: A): A
- Definition Classes
- Signed
- abstract def fromBigDecimal(n: BigDecimal): A
- Definition Classes
- ConvertableTo
- abstract def fromByte(n: Byte): A
- Definition Classes
- ConvertableTo
- abstract def fromDouble(d: Double, a: A): A
- Definition Classes
- ConvertableTo
- abstract def fromDouble(n: Double): A
- Definition Classes
- ConvertableTo
- abstract def fromDoubleWithFixedWidth(d: Double, a: A): A
- Definition Classes
- ConvertableTo
- abstract def fromFloat(n: Float): A
- Definition Classes
- ConvertableTo
- abstract def fromLong(n: Long): A
- Definition Classes
- ConvertableTo
- abstract def fromShort(n: Short): A
- Definition Classes
- ConvertableTo
- abstract def fromType[B](b: B)(implicit arg0: spire.math.ConvertableFrom[B]): A
- Definition Classes
- ConvertableTo
- abstract def getClass(): Class[_ <: AnyRef]
- Definition Classes
- Any
- abstract def isOdd(a: A): Bool
- Definition Classes
- IsIntegral
- abstract def minusContext(f: A, g: A): A
- Definition Classes
- Ring
- abstract def mod(a: A, b: A): A
- Definition Classes
- IsIntegral
- abstract def negate(x: A): A
- Definition Classes
- AdditiveGroup
- abstract def negateContext(f: A): A
- Definition Classes
- Ring
- abstract def one: A
- Definition Classes
- MultiplicativeMonoid
- abstract def plus(x: A, y: A): A
- Definition Classes
- AdditiveSemigroup
- abstract def plusContext(f: A, g: A): A
- Definition Classes
- Ring
- abstract def signum(a: A): ComparisonBundle
Returns 0 if
a
is 0, > 0 ifa
is positive, and < 0 isa
is negative.Returns 0 if
a
is 0, > 0 ifa
is positive, and < 0 isa
is negative.- Definition Classes
- Signed
- abstract def times(x: A, y: A): A
- Definition Classes
- MultiplicativeSemigroup
- abstract def timesContext(f: A, g: A): A
- Definition Classes
- Ring
- abstract def zero: A
- Definition Classes
- AdditiveMonoid
Concrete Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- Any
- final def ##: Int
- Definition Classes
- Any
- final def ==(arg0: Any): Boolean
- Definition Classes
- Any
- def additive: CommutativeGroup[A]
- Definition Classes
- AdditiveCommutativeGroup → AdditiveCommutativeMonoid → AdditiveCommutativeSemigroup → AdditiveGroup → AdditiveMonoid → AdditiveSemigroup
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def ceil(a: A): A
Rounds
a
the nearest integer that is greater than or equal toa
.Rounds
a
the nearest integer that is greater than or equal toa
.- Definition Classes
- IsIntegral → IsReal
- def equals(arg0: Any): Boolean
- Definition Classes
- Any
- def eqv(x: A, y: A): Bool
Returns
true
ifx
andy
are equivalent,false
otherwise.Returns
true
ifx
andy
are equivalent,false
otherwise.- Definition Classes
- Order → PartialOrder → Eq
- def floor(a: A): A
Rounds
a
the nearest integer that is less than or equal toa
.Rounds
a
the nearest integer that is less than or equal toa
.- Definition Classes
- IsIntegral → IsReal
- def fromAlgebraic(a: Algebraic): A
- Definition Classes
- Real → ConvertableTo
- def fromBigInt(n: BigInt): A
- Definition Classes
- Ring
- def fromInt(n: Int): A
- Definition Classes
- Ring
- def fromRational(a: Rational): A
- Definition Classes
- Real → ConvertableTo
- def fromReal(a: spire.math.Real): A
- Definition Classes
- Real → ConvertableTo
- def gt(x: A, y: A): Bool
- Definition Classes
- Order → PartialOrder
- def gteqv(x: A, y: A): Bool
- Definition Classes
- Order → PartialOrder
- def hashCode(): Int
- Definition Classes
- Any
- def isEven(a: A): Bool
- Definition Classes
- IsIntegral
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- def isOne(a: A)(implicit ev: algebra.Eq[A]): Boolean
- Definition Classes
- MultiplicativeMonoid
- def isSignNegative(a: A): Bool
- Definition Classes
- Signed
- def isSignNonNegative(a: A): Bool
- Definition Classes
- Signed
- def isSignNonPositive(a: A): Bool
- Definition Classes
- Signed
- def isSignNonZero(a: A): Bool
- Definition Classes
- Signed
- def isSignPositive(a: A): Bool
- Definition Classes
- Signed
- def isSignZero(a: A): Bool
- Definition Classes
- Signed
- def isWhole(a: A): Bool
Returns
true
iffa
is a an integer.Returns
true
iffa
is a an integer.- Definition Classes
- IsIntegral → IsReal
- def isZero(a: A)(implicit ev: algebra.Eq[A]): Boolean
- Definition Classes
- AdditiveMonoid
- def lt(x: A, y: A): Bool
- Definition Classes
- Order → PartialOrder
- def lteqv(x: A, y: A): Bool
- Definition Classes
- Order → PartialOrder
- def max(x: A, y: A): A
- Definition Classes
- Order
- def min(x: A, y: A): A
- Definition Classes
- Order
- def minus(x: A, y: A): A
- Definition Classes
- AdditiveGroup
- def multiplicative: Monoid[A]
- Definition Classes
- MultiplicativeMonoid → MultiplicativeSemigroup
- def neqv(x: A, y: A): Bool
Returns
false
ifx
andy
are equivalent,true
otherwise.Returns
false
ifx
andy
are equivalent,true
otherwise.- Definition Classes
- Eq
- def on[B <: Data](f: (B) => A): Order[B]
Defines an order on
B
by mappingB
toA
usingf
and usingA
s order to orderB
.Defines an order on
B
by mappingB
toA
usingf
and usingA
s order to orderB
.- Definition Classes
- Order → PartialOrder → Eq
- def partialCompare(x: A, y: A): ValidIO[ComparisonBundle]
Result of comparing
x
withy
.Result of comparing
x
withy
. Returns ValidIO[ComparisonBundle] withvalid
false if operands are not comparable. If operands are comparable,bits.lt
will be true ifx
<y
andbits.eq
will be true ifx
=y
- Definition Classes
- Order → PartialOrder
- def pmax(x: A, y: A): ValidIO[A]
Returns Some(x) if x >= y, Some(y) if x < y, otherwise None.
Returns Some(x) if x >= y, Some(y) if x < y, otherwise None.
- Definition Classes
- PartialOrder
- def pmin(x: A, y: A): ValidIO[A]
Returns Some(x) if x <= y, Some(y) if x > y, otherwise None.
Returns Some(x) if x <= y, Some(y) if x > y, otherwise None.
- Definition Classes
- PartialOrder
- def positivePow(a: A, n: Int): A
- Attributes
- protected[this]
- Definition Classes
- MultiplicativeSemigroup
- def positiveSumN(a: A, n: Int): A
- Attributes
- protected[this]
- Definition Classes
- AdditiveSemigroup
- def pow(a: A, n: Int): A
- Definition Classes
- MultiplicativeMonoid → MultiplicativeSemigroup
- def product(as: TraversableOnce[A]): A
- Definition Classes
- MultiplicativeMonoid
- def reverse: Order[A]
Defines an ordering on
A
where all arrows switch direction.Defines an ordering on
A
where all arrows switch direction.- Definition Classes
- Order → PartialOrder
- def round(a: A): A
Rounds
a
to the nearest integer (When the fractional part is 0.5, tie breaking rounds to positive infinity i.e.Rounds
a
to the nearest integer (When the fractional part is 0.5, tie breaking rounds to positive infinity i.e. round half up)- Definition Classes
- IsIntegral → IsReal
- def sign(a: A): Sign
Returns Zero if
a
is 0, Positive ifa
is positive, and Negative isa
is negative.Returns Zero if
a
is 0, Positive ifa
is positive, and Negative isa
is negative.- Definition Classes
- Signed
- def sum(as: TraversableOnce[A]): A
- Definition Classes
- AdditiveMonoid
- def sumN(a: A, n: Int): A
- Definition Classes
- AdditiveGroup → AdditiveMonoid → AdditiveSemigroup
- def toString(): String
- Definition Classes
- Any
- def truncate(a: A): A
- Definition Classes
- IsIntegral → IsReal
- def tryProduct(as: TraversableOnce[A]): Option[A]
- Definition Classes
- MultiplicativeMonoid → MultiplicativeSemigroup
- def trySum(as: TraversableOnce[A]): Option[A]
- Definition Classes
- AdditiveMonoid → AdditiveSemigroup