Packages

case class LogRegRanker(train: Dataset) extends Ranker[LogRegModel, RegressionOptions] with Product with Serializable

Linear Supertypes
Serializable, Serializable, Product, Equals, Ranker[LogRegModel, RegressionOptions], Logging, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. LogRegRanker
  2. Serializable
  3. Serializable
  4. Product
  5. Equals
  6. Ranker
  7. Logging
  8. AnyRef
  9. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new LogRegRanker(train: Dataset)

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  6. def close(): Unit
    Definition Classes
    LogRegRankerRanker
  7. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  8. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. def fit(options: RegressionOptions): LogRegModel
    Definition Classes
    LogRegRankerRanker
  10. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  11. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  12. val logger: Logger
    Definition Classes
    Logging
  13. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  14. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  15. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  16. def predict(row: RealVector, weights: RealVector, intercept: Double): Double
  17. def prepare(): (Array2DRowRealMatrix, ArrayRealVector)
  18. def randomSample(from: Int, to: Int, count: Int): Array[Int]
  19. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  20. val train: Dataset
  21. def trainBatchSGD(x: Array2DRowRealMatrix, y: RealVector, iterations: Int, batchSize: Int, lr: Double): RegWeights
  22. def trainSGD(x: Array2DRowRealMatrix, y: RealVector, iterations: Int, lr: Double): RegWeights
  23. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  24. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  25. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  26. val x: Array2DRowRealMatrix
  27. val y: ArrayRealVector

Inherited from Serializable

Inherited from Serializable

Inherited from Product

Inherited from Equals

Inherited from Logging

Inherited from AnyRef

Inherited from Any

Ungrouped