Packages

case class LogRegModel(weights: List[FeatureWeight], intercept: Double) extends Model with Product with Serializable

Linear Supertypes
Serializable, Product, Equals, Model, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. LogRegModel
  2. Serializable
  3. Product
  4. Equals
  5. Model
  6. AnyRef
  7. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. Protected

Instance Constructors

  1. new LogRegModel(weights: List[FeatureWeight], intercept: Double)

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##: Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.CloneNotSupportedException]) @native() @HotSpotIntrinsicCandidate()
  6. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  7. def eval(data: Dataset, metric: Metric): Double

    Eval a metric over the whole dataset

    Eval a metric over the whole dataset

    Definition Classes
    LogRegModelModel
  8. final def getClass(): Class[_ <: AnyRef]
    Definition Classes
    AnyRef → Any
    Annotations
    @native() @HotSpotIntrinsicCandidate()
  9. val intercept: Double
  10. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  11. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  12. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @HotSpotIntrinsicCandidate()
  13. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @HotSpotIntrinsicCandidate()
  14. def predict(values: RealVector): Double

    Make single prediction

    Make single prediction

    Definition Classes
    LogRegModelModel
  15. def predict(values: RealMatrix): ArrayRealVector

    Make batch prediction, default impl falling back to per-row predict.

    Make batch prediction, default impl falling back to per-row predict. You should overload it for better performance.

    Definition Classes
    Model
  16. def productElementNames: Iterator[String]
    Definition Classes
    Product
  17. final def synchronized[T0](arg0: => T0): T0
    Definition Classes
    AnyRef
  18. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])
  19. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException]) @native()
  20. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])
  21. val weights: List[FeatureWeight]
  22. val weightsVector: ArrayRealVector

Deprecated Value Members

  1. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.Throwable]) @Deprecated
    Deprecated

Inherited from Serializable

Inherited from Product

Inherited from Equals

Inherited from Model

Inherited from AnyRef

Inherited from Any

Ungrouped