lamp.extratrees
Members list
Type members
Classlikes
Attributes
- Companion
- object
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait ClassificationTreeclass Objecttrait Matchableclass AnyShow all
Attributes
- Companion
- class
- Supertypes
-
trait Producttrait Mirrorclass Objecttrait Matchableclass Any
- Self type
-
ClassificationLeaf.type
Attributes
- Companion
- object
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait ClassificationTreeclass Objecttrait Matchableclass AnyShow all
Attributes
- Companion
- class
- Supertypes
-
trait Producttrait Mirrorclass Objecttrait Matchableclass Any
- Self type
Attributes
- Companion
- object
- Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
-
class ClassificationLeafclass ClassificationNonLeaf
Attributes
- Companion
- trait
- Supertypes
-
trait Sumtrait Mirrorclass Objecttrait Matchableclass Any
- Self type
-
ClassificationTree.type
Attributes
- Companion
- object
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait RegressionTreeclass Objecttrait Matchableclass AnyShow all
Attributes
- Companion
- class
- Supertypes
-
trait Producttrait Mirrorclass Objecttrait Matchableclass Any
- Self type
-
RegressionLeaf.type
Attributes
- Companion
- object
- Supertypes
-
trait Serializabletrait Producttrait Equalstrait RegressionTreeclass Objecttrait Matchableclass AnyShow all
Attributes
- Companion
- class
- Supertypes
-
trait Producttrait Mirrorclass Objecttrait Matchableclass Any
- Self type
-
RegressionNonLeaf.type
Attributes
- Companion
- object
- Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
-
class RegressionLeafclass RegressionNonLeaf
Attributes
- Companion
- trait
- Supertypes
-
trait Sumtrait Mirrorclass Objecttrait Matchableclass Any
- Self type
-
RegressionTree.type
Value members
Concrete methods
Train an extratrees classifier forest
Train an extratrees classifier forest
Value parameters
- bestSplit
-
if true then the split is not random but the best among possible splits.
- k
-
number of features to consider in each split step. The best among these will be chosen.
- m
-
number of trees
- maxDepth
-
maximum tree depth
- nMin
-
minimum sample size for splitting a node
- seed
-
Returns a list of ClassificationTree objects which can be passed to
predictClassification
Attributes
Train an extratrees regression forest
Train an extratrees regression forest
Value parameters
- bestSplit
-
if true then the split is not random but the best among possible splits.
- k
-
number of features to consider in each split step. The best among these will be chosen.
- m
-
number of trees
- maxDepth
-
maximum tree depth
- nMin
-
minimum sample size for splitting a node
- seed
-
Returns a list of RegressionTree objects which can be passed to
predictRegression
Attributes
Prediction from a set of trees
Prediction from a set of trees
Returns a matrix of nxm where n is the number of samples m is the number of classes, column c corresponds to class c.