lamp.extratrees

package lamp.extratrees

Members list

Type members

Classlikes

case class ClassificationLeaf(targetDistribution: Seq[Double]) extends ClassificationTree

Attributes

Companion
object
Supertypes
trait Serializable
trait Product
trait Equals
class Object
trait Matchable
class Any
Show all

Attributes

Companion
class
Supertypes
trait Product
trait Mirror
class Object
trait Matchable
class Any
Self type
case class ClassificationNonLeaf(left: ClassificationTree, right: ClassificationTree, splitFeature: Int, cutpoint: Double, splitMissingIsLess: Boolean) extends ClassificationTree

Attributes

Companion
object
Supertypes
trait Serializable
trait Product
trait Equals
class Object
trait Matchable
class Any
Show all

Attributes

Companion
class
Supertypes
trait Product
trait Mirror
class Object
trait Matchable
class Any
Self type
sealed trait ClassificationTree

Attributes

Companion
object
Supertypes
class Object
trait Matchable
class Any
Known subtypes

Attributes

Companion
trait
Supertypes
trait Sum
trait Mirror
class Object
trait Matchable
class Any
Self type
case class RegressionLeaf(targetMean: Double) extends RegressionTree

Attributes

Companion
object
Supertypes
trait Serializable
trait Product
trait Equals
class Object
trait Matchable
class Any
Show all

Attributes

Companion
class
Supertypes
trait Product
trait Mirror
class Object
trait Matchable
class Any
Self type
case class RegressionNonLeaf(left: RegressionTree, right: RegressionTree, splitFeature: Int, cutpoint: Double, splitMissingIsLess: Boolean) extends RegressionTree

Attributes

Companion
object
Supertypes
trait Serializable
trait Product
trait Equals
class Object
trait Matchable
class Any
Show all

Attributes

Companion
class
Supertypes
trait Product
trait Mirror
class Object
trait Matchable
class Any
Self type
sealed trait RegressionTree

Attributes

Companion
object
Supertypes
class Object
trait Matchable
class Any
Known subtypes

Attributes

Companion
trait
Supertypes
trait Sum
trait Mirror
class Object
trait Matchable
class Any
Self type

Value members

Concrete methods

def buildForestClassification(data: Mat[Double], target: Vec[Int], sampleWeights: Option[Vec[Double]], numClasses: Int, nMin: Int, k: Int, m: Int, parallelism: Int, bestSplit: Boolean, maxDepth: Int, seed: Long): Seq[ClassificationTree]

Train an extratrees classifier forest

Train an extratrees classifier forest

Value parameters

bestSplit

if true then the split is not random but the best among possible splits.

k

number of features to consider in each split step. The best among these will be chosen.

m

number of trees

maxDepth

maximum tree depth

nMin

minimum sample size for splitting a node

seed

Returns a list of ClassificationTree objects which can be passed to predictClassification

Attributes

def buildForestRegression(data: Mat[Double], target: Vec[Double], nMin: Int, k: Int, m: Int, parallelism: Int, bestSplit: Boolean, maxDepth: Int, seed: Long): Seq[RegressionTree]

Train an extratrees regression forest

Train an extratrees regression forest

Value parameters

bestSplit

if true then the split is not random but the best among possible splits.

k

number of features to consider in each split step. The best among these will be chosen.

m

number of trees

maxDepth

maximum tree depth

nMin

minimum sample size for splitting a node

seed

Returns a list of RegressionTree objects which can be passed to predictRegression

Attributes

def predictClassification(trees: Seq[ClassificationTree], samples: Mat[Double]): Mat[Double]

Prediction from a set of trees

Prediction from a set of trees

Returns a matrix of nxm where n is the number of samples m is the number of classes, column c corresponds to class c.

Attributes

def predictRegression(trees: Seq[RegressionTree], samples: Mat[Double]): Vec[Double]