BertLoss

lamp.nn.bert.BertLoss
See theBertLoss companion class
object BertLoss

Attributes

Companion
class
Graph
Supertypes
trait Product
trait Mirror
class Object
trait Matchable
class Any
Self type
BertLoss.type

Members list

Type members

Inherited types

type MirroredElemLabels <: Tuple

The names of the product elements

The names of the product elements

Attributes

Inherited from:
Mirror
type MirroredLabel <: String

The name of the type

The name of the type

Attributes

Inherited from:
Mirror

Value members

Concrete methods

def apply[S : Sc](maxLength: Int, vocabularySize: Int, segmentVocabularySize: Int, mlmHiddenDim: Int, wholeStentenceHiddenDim: Int, numBlocks: Int, embeddingDim: Int, attentionHiddenPerHeadDim: Int, attentionNumHeads: Int, bertEncoderMlpHiddenDim: Int, dropout: Double, padToken: Long, tOpt: STenOptions, linearized: Boolean, positionEmbedding: Option[STen]): BertLoss

Allocate Bert module

Allocate Bert module

Value parameters

bertEncoderMlpHiddenDim

Hidden dimension within transformer blocks

embeddingDim

Width of the initial embedding dimension, as well as the output width of the feed forward network in each transformer block

linearized

Whether to use linearized self attention

maxLength

Total sequence length including cls, sep and potential pad tokens

mlmHiddenDim

Hidden dimension of the masked language model decoder

numBlocks

Number of transformer blocks

padToken

pad will be ignored

segmentVocabularySize

Vocabulary size of the segment features

vocabularySize

Total vocabulary size including cls, sep, pad, mask tokens

wholeStentenceHiddenDim

Hidden dimension of the whole sentence task decoder

Attributes

Implicits

Implicits

implicit val load: Load[BertLoss]