object IOLoops
Contains a training loops and helpers around it
The two training loops implemented here are:
- lamp.data.IOLoops.epochs
- lamp.data.IOLoops.withSWA implements Stochastic Weight Averaging
Linear Supertypes
Ordering
- Alphabetic
- By Inheritance
Inherited
- IOLoops
- AnyRef
- Any
- Hide All
- Show All
Visibility
- Public
- Protected
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @native()
- def epochs[I, M <: GenericModule[I, Variable]](model: SupervisedModel[I, M], optimizerFactory: (Seq[(STen, PTag)]) => Optimizer, trainBatchesOverEpoch: () => BatchStream[I], validationBatchesOverEpoch: Option[() => BatchStream[I]], epochs: Int, trainingCallback: TrainingCallback = TrainingCallback.noop, validationCallback: ValidationCallback = ValidationCallback.noop, checkpointFile: Option[File] = None, minimumCheckpointFile: Option[File] = None, validationFrequency: Int = 1, logger: Option[Logger] = None, returnMinValidationLossModel: Seq[Int] = Nil, learningRateSchedule: LearningRateSchedule = LearningRateSchedule.noop, prefetchData: Boolean = false)(implicit arg0: Load[M]): IO[(Int, SupervisedModel[I, M], List[(Int, Double, Option[Double])])]
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable])
- def forwardBatchStream[I, M <: GenericModule[I, Variable]](batchStream: BatchStream[I], model: M with GenericModule[I, Variable]): IO[Unit]
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- def oneEpoch[I, M <: GenericModule[I, Variable]](epochCount: Long, trainingCallback: TrainingCallback, model: ModelWithOptimizer[I, M], trainBatches: BatchStream[I], logger: Option[Logger], learningRateScheduleFactor: Double, prefetchEC: Option[(ExecutionContext, ExecutionContext)]): IO[Double]
- def runBatchStream[I, M <: GenericModule[I, Variable]](batchStream: BatchStream[I], model: M with GenericModule[I, Variable])(implicit scope: Scope): IO[List[STen]]
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def toString(): String
- Definition Classes
- AnyRef → Any
- def validationOneEpoch[I, M <: GenericModule[I, Variable]](model: SupervisedModel[I, M], validationBatches: BatchStream[I], validationCallback: ValidationCallback, logger: Option[Logger], epochCount: Long, minimumCheckpointFile: Option[File], minimumValidationLossSoFar: Option[Double]): IO[Double]
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- def withSWA[I, M <: GenericModule[I, Variable]](model: SupervisedModel[I, M], optimizerFactory: (Seq[(STen, PTag)]) => Optimizer, trainBatchesOverEpoch: () => BatchStream[I], warmupEpochs: Int, swaEpochs: Int, validationBatchesOverEpoch: Option[() => BatchStream[I]] = None, trainingCallback: TrainingCallback = TrainingCallback.noop, validationCallback: ValidationCallback = ValidationCallback.noop, checkpointFile: Option[File] = None, minimumCheckpointFile: Option[File] = None, logger: Option[Logger] = None, returnMinValidationLossModel: Seq[Int] = Nil, learningRateSchedule: LearningRateSchedule = LearningRateSchedule.decrement(20, 0.5), swaLearningRateSchedule: SWALearningRateSchedule = SWA.SWALearningRateSchedule.cyclic( minFactor = 0.01, maxFactor = 1d, cycleLength = 10 ), prefetchData: Boolean = true)(implicit arg0: Load[M]): IO[(Int, SupervisedModel[I, M], List[(Int, Double, Option[Double])])]