Trait/Object

io.github.mandar2812.dynaml.kernels

SVMKernel

Related Docs: object SVMKernel | package kernels

Permalink

trait SVMKernel[M] extends CovarianceFunction[DenseVector[Double], Double, M] with Serializable

Defines an abstract class outlines the basic functionality requirements of an SVM Kernel

Linear Supertypes
CovarianceFunction[DenseVector[Double], Double, M], Kernel[DenseVector[Double], Double], Serializable, Serializable, AnyRef, Any
Known Subclasses
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. SVMKernel
  2. CovarianceFunction
  3. Kernel
  4. Serializable
  5. Serializable
  6. AnyRef
  7. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Abstract Value Members

  1. abstract def buildCrossKernelMatrix[S <: Seq[DenseVector[Double]]](dataset1: S, dataset2: S): M

    Permalink
    Definition Classes
    CovarianceFunction
  2. abstract def buildKernelMatrix[S <: Seq[DenseVector[Double]]](mappedData: S, length: Int): KernelMatrix[M]

    Permalink
    Definition Classes
    CovarianceFunction
  3. abstract def evaluateAt(config: Map[String, Double])(x: DenseVector[Double], y: DenseVector[Double]): Double

    Permalink
    Definition Classes
    CovarianceFunction
  4. abstract def gradientAt(config: Map[String, Double])(x: DenseVector[Double], y: DenseVector[Double]): Map[String, Double]

    Permalink
    Definition Classes
    CovarianceFunction
  5. abstract val hyper_parameters: List[String]

    Permalink
    Definition Classes
    CovarianceFunction

Concrete Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def block(h: String*): Unit

    Permalink
    Definition Classes
    CovarianceFunction
  6. def block_all_hyper_parameters: Unit

    Permalink
    Definition Classes
    CovarianceFunction
  7. var blocked_hyper_parameters: List[String]

    Permalink
    Definition Classes
    CovarianceFunction
  8. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  9. def effective_hyper_parameters: List[String]

    Permalink
    Definition Classes
    CovarianceFunction
  10. def effective_state: Map[String, Double]

    Permalink
    Definition Classes
    CovarianceFunction
  11. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  12. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  13. def evaluate(x: DenseVector[Double], y: DenseVector[Double]): Double

    Permalink
    Definition Classes
    CovarianceFunctionKernel
  14. def featureMapping(decomposition: (DenseVector[Double], DenseMatrix[Double]))(prototypes: List[DenseVector[Double]])(data: DenseVector[Double]): DenseVector[Double]

    Permalink

    Builds an approximate nonlinear feature map which corresponds to an SVM Kernel.

    Builds an approximate nonlinear feature map which corresponds to an SVM Kernel. This is done using the Nystrom method i.e. approximating the eigenvalues and eigenvectors of the Kernel matrix of some data set.

    For each data point, calculate m dimensions of the feature map where m is the number of eigenvalues/vectors obtained from the Eigen Decomposition.

    phi_i(x) = (1/sqrt(eigenvalue(i)))*Sum(k, 1, m, K(k, x)*eigenvector(i)(k))

    decomposition

    The Eigenvalue decomposition calculated from the kernel matrix of the prototype subset.

    prototypes

    The prototype subset.

    data

    The dataset on which the feature map is to be applied.

  15. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  16. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  17. def gradient(x: DenseVector[Double], y: DenseVector[Double]): Map[String, Double]

    Permalink
    Definition Classes
    CovarianceFunction
  18. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  19. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  20. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  21. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  22. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  23. def setHyperParameters(h: Map[String, Double]): SVMKernel.this.type

    Permalink
    Definition Classes
    CovarianceFunction
  24. var state: Map[String, Double]

    Permalink
    Definition Classes
    CovarianceFunction
  25. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  26. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  27. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  28. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  29. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from CovarianceFunction[DenseVector[Double], Double, M]

Inherited from Kernel[DenseVector[Double], Double]

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped