Package

io.github.mandar2812.dynaml

kernels

Permalink

package kernels

Visibility
  1. Public
  2. All

Type Members

  1. class AdditiveCovariance[Index] extends CompositeCovariance[Index]

    Permalink

    A kernel formed by addition of two kernels k(.,.) = k1(.,.) + k2(.,.)

  2. class AnovaCovFunc extends CovarianceFunction[Double, Double, DenseMatrix[Double]] with LocalSVMKernel[Double]

    Permalink
  3. class AnovaKernel extends CovarianceFunction[DenseVector[Double], Double, DenseMatrix[Double]] with SVMKernel[DenseMatrix[Double]] with LocalSVMKernel[DenseVector[Double]] with Serializable

    Permalink

  4. class CauchyCovFunc extends CovarianceFunction[Double, Double, DenseMatrix[Double]] with LocalScalarKernel[Double]

    Permalink
  5. class CauchyKernel extends StationaryKernel[DenseVector[Double], Double, DenseMatrix[Double]] with SVMKernel[DenseMatrix[Double]] with LocalScalarKernel[DenseVector[Double]] with Serializable

    Permalink

    Cauchy Kernel given by the expression K(x,y) = 1/(1 + ||x-y||22)

    Cauchy Kernel given by the expression K(x,y) = 1/(1 + ||x-y||22)

  6. class CoRegCauchyKernel extends CovarianceFunction[Int, Double, DenseMatrix[Double]] with LocalScalarKernel[Int]

    Permalink
  7. class CoRegDiracKernel extends CovarianceFunction[Int, Double, DenseMatrix[Double]] with LocalSVMKernel[Int]

    Permalink
  8. class CoRegGraphKernel extends CovarianceFunction[Int, Double, DenseMatrix[Double]] with LocalSVMKernel[Int]

    Permalink

  9. class CoRegLaplaceKernel extends CovarianceFunction[Int, Double, DenseMatrix[Double]] with LocalScalarKernel[Int]

    Permalink
  10. class CoRegRBFKernel extends CovarianceFunction[Int, Double, DenseMatrix[Double]] with LocalScalarKernel[Int]

    Permalink
  11. class CoRegTStudentKernel extends CovarianceFunction[Int, Double, DenseMatrix[Double]] with LocalSVMKernel[Int]

    Permalink
  12. abstract class CompositeCovariance[T] extends CovarianceFunction[T, Double, DenseMatrix[Double]] with LocalSVMKernel[T]

    Permalink
  13. abstract class CovarianceFunction[T, V, M] extends Kernel[T, V] with Serializable

    Permalink

    A (symmeteric positive definite) covariance function.

    A (symmeteric positive definite) covariance function. Covariance functions are central to Gaussian/Student T Process Models as well as SVMs.

    T

    The index set over which K(.,.) is defined K: T × T -> V

    V

    The value outputted by the kernel

    M

    The type of the kernel matrix object.

  14. class CubicSplineARDKernel[I] extends StationaryKernel[I, Double, DenseMatrix[Double]] with LocalScalarKernel[I]

    Permalink

    Automatic relevance determination (ARD) version of the cubic spline kernel.

    Cubic Spline Kernel (ARD)

    Automatic relevance determination (ARD) version of the cubic spline kernel.

    I

    Input domain

  15. class CubicSplineKernel[I] extends StationaryKernel[I, Double, DenseMatrix[Double]] with LocalScalarKernel[I]

    Permalink

    Implementation of the cubic spline kernel/covariance function, for arbitrary domains I over which a field and norm are defined as implicits.

    Cubic Spline Covariance

    Implementation of the cubic spline kernel/covariance function, for arbitrary domains I over which a field and norm are defined as implicits.

    I

    The index set/domain over which the kernel is defined

  16. class DecomposableCovariance[S] extends CompositeCovariance[S]

    Permalink

    A kernel/covariance function which can be seen as a combination of base kernels over a subset of the input space.

    A kernel/covariance function which can be seen as a combination of base kernels over a subset of the input space.

    for example K((x1, y1), (x1, y2)) = k1(x1,x2) + k2(y1,y2)

  17. trait DensityKernel extends Kernel[DenseVector[Double], Double] with Serializable

    Permalink

    Abstract class which can be extended to implement various Multivariate Density Kernels.

  18. class DiracKernel extends CovarianceFunction[DenseVector[Double], Double, DenseMatrix[Double]] with SVMKernel[DenseMatrix[Double]] with LocalSVMKernel[DenseVector[Double]] with Serializable

    Permalink

    Dirac kernel is equivalent to the classical Dirac delta function scaled by a hyper-parameter called the noise level.

    Dirac kernel is equivalent to the classical Dirac delta function scaled by a hyper-parameter called the noise level.

    K(x,y) = noise*DiracDelta(x,y)

  19. trait DistributedKernel[T] extends Kernel[T, Double]

    Permalink

    Created by mandar on 28/09/2016.

  20. class ExponentialKernel extends CovarianceFunction[DenseVector[Double], Double, DenseMatrix[Double]] with SVMKernel[DenseMatrix[Double]] with LocalScalarKernel[DenseVector[Double]] with Serializable

    Permalink

    Implementation of the Normalized Exponential Kernel

    Implementation of the Normalized Exponential Kernel

    K(x,y) = exp(β*(x.y))

  21. class FBMCovFunction extends CovarianceFunction[Double, Double, DenseMatrix[Double]] with LocalSVMKernel[Double]

    Permalink

    Created by mandar on 20/11/15.

  22. class FBMKernel extends CovarianceFunction[DenseVector[Double], Double, DenseMatrix[Double]] with SVMKernel[DenseMatrix[Double]] with LocalSVMKernel[DenseVector[Double]] with Serializable

    Permalink

    Fractional Brownian Kernel:

    Fractional Brownian Kernel:

    Fractional Brownian Motion is a stochastic process first studied by Mandelbrot and Von Ness its covariance function generalized to multivariate index sets is.

    K(x,y) = 1/2 × (||x||2H + ||y||2H - ||x-y||2H)

  23. class FeatureMapCovariance[T, U] extends CovarianceFunction[T, Double, DenseMatrix[Double]] with LocalSVMKernel[T]

    Permalink

  24. class GaussianDensityKernel extends DensityKernel with Serializable

    Permalink
  25. class GaussianSpectralKernel[T] extends StationaryKernel[T, Double, DenseMatrix[Double]] with LocalScalarKernel[T]

    Permalink

    Implements the gaussian spectral mixture kernel as outlined in Wilson et.

    Implements the gaussian spectral mixture kernel as outlined in Wilson et. al.

    The kernel is defined as the inverse fourier transform of a gaussian spectral density as is shown by Bochner's theorem.

    K(d) = exp(-2π2 dTΣ-1d) × cos(2πμTd)

    T

    The domain over which the kernel is defined

  26. class GenExpSpaceTimeKernel[I] extends CovarianceFunction[(I, Double), Double, DenseMatrix[Double]] with LocalScalarKernel[(I, Double)]

    Permalink

    An exponential family covariance function between space time coordinates

  27. class GenExponentialKernel[I] extends CovarianceFunction[I, Double, DenseMatrix[Double]] with LocalScalarKernel[I]

    Permalink

    Covariance expressed as exponential of some scaled distance metric between arguments.

    Covariance expressed as exponential of some scaled distance metric between arguments.

    K(x, y) = σ2 exp(-1/2 × ||x-y||/θ)

  28. abstract class GenericMaternARDKernel[T] extends StationaryKernel[T, Double, DenseMatrix[Double]] with LocalScalarKernel[T] with Serializable

    Permalink

    Implementation of the half integer Matern-ARD covariance function

  29. class GenericMaternKernel[T] extends StationaryKernel[T, Double, DenseMatrix[Double]] with LocalScalarKernel[T] with Serializable

    Permalink

    Implementation of the half integer Matern covariance function, for arbitrary domains.

    Matern Half Integer Covariance Family

    Implementation of the half integer Matern covariance function, for arbitrary domains.

  30. class GenericRBFKernel[T] extends StationaryKernel[T, Double, DenseMatrix[Double]] with LocalScalarKernel[T] with Serializable

    Permalink

    RBF Kernels of the form K(x,y) = exp(-||x - y||2/2 × l2)

    RBF Kernels of the form K(x,y) = exp(-||x - y||2/2 × l2)

  31. class IdentityCovFunc extends CovarianceFunction[Double, Double, DenseMatrix[Double]] with LocalSVMKernel[Double]

    Permalink

    Created by mandar on 23/11/15.

  32. trait Kernel[T, V] extends Serializable

    Permalink

    Defines a base class for kernels defined on arbitrary objects.

    Defines a base class for kernels defined on arbitrary objects.

    T

    The domain over which kernel function k(x, y) is defined. i.e. x,y belong to T

    V

    The type of value returned by the kernel function k(x,y)

  33. trait KernelMatrix[T] extends Serializable

    Permalink

    Defines a trait which outlines the basic functionality of Kernel Matrices.

  34. sealed trait KernelOpAdd extends KernelOpType

    Permalink
  35. sealed trait KernelOpMult extends KernelOpType

    Permalink
  36. sealed trait KernelOpType extends AnyRef

    Permalink

  37. sealed trait KernelOuterAdd extends KernelOpType

    Permalink
  38. sealed trait KernelOuterMult extends KernelOpType

    Permalink
  39. class KroneckerProductKernel[R, S] extends TensorCombinationKernel[R, S]

    Permalink
  40. class LaplaceCovFunc extends CovarianceFunction[Double, Double, DenseMatrix[Double]] with LocalScalarKernel[Double]

    Permalink
  41. class LaplacianKernel extends StationaryKernel[DenseVector[Double], Double, DenseMatrix[Double]] with SVMKernel[DenseMatrix[Double]] with LocalScalarKernel[DenseVector[Double]] with Serializable

    Permalink

    Implementation of the Normalized Exponential Kernel

    Implementation of the Normalized Exponential Kernel

    K(x,y) = exp(-||x-y||/b)

  42. class LinearKernel extends CovarianceFunction[DenseVector[Double], Double, DenseMatrix[Double]] with SVMKernel[DenseMatrix[Double]] with LocalSVMKernel[DenseVector[Double]] with Serializable

    Permalink

    18/8/15.

  43. trait LinearPDEKernel[I] extends CovarianceFunction[(I, Double), Double, DenseMatrix[Double]] with LocalScalarKernel[(I, Double)]

    Permalink

    Kernels for linear PDE operator equations.

  44. trait LocalSVMKernel[Index] extends CovarianceFunction[Index, Double, DenseMatrix[Double]] with LocalScalarKernel[Index]

    Permalink

    Kernels with a locally stored matrix in the form of a breeze DenseMatrix instance.

    Kernels with a locally stored matrix in the form of a breeze DenseMatrix instance. Optionally a kernel matrix stored as a PartitionedPSDMatrix can also be generated.

  45. trait LocalScalarKernel[Index] extends CovarianceFunction[Index, Double, DenseMatrix[Double]] with Serializable

    Permalink

    Scalar Kernel defines algebraic behavior for kernels of the form K: Index x Index -> Double, i.e.

    Scalar Kernel defines algebraic behavior for kernels of the form K: Index x Index -> Double, i.e. kernel functions whose output is a scalar/double value. Generic behavior for these kernels is given by the ability to add and multiply valid kernels to create new valid scalar kernel functions.

  46. class LocallyStationaryKernel[I] extends CovarianceFunction[I, Double, DenseMatrix[Double]] with LocalScalarKernel[I]

    Permalink

    Implementation of locally stationary kernels as defined in http://jmlr.csail.mit.edu/papers/volume2/genton01a/genton01a.pdf

    Implementation of locally stationary kernels as defined in http://jmlr.csail.mit.edu/papers/volume2/genton01a/genton01a.pdf

    K(x,y) = K1(x+y/2)×K2(x-y)

    I

    The index set or input domain over which the kernel function is evaluated.

  47. class MAKernel extends CovarianceFunction[Double, Double, DenseMatrix[Double]] with LocalSVMKernel[Double] with Serializable

    Permalink
  48. class MLP1dKernel extends CovarianceFunction[Double, Double, DenseMatrix[Double]] with LocalSVMKernel[Double] with Serializable

    Permalink
  49. class MLPKernel extends CovarianceFunction[DenseVector[Double], Double, DenseMatrix[Double]] with SVMKernel[DenseMatrix[Double]] with LocalSVMKernel[DenseVector[Double]] with Serializable

    Permalink

  50. class MahalanobisKernel extends CovarianceFunction[DenseVector[Double], Double, DenseMatrix[Double]] with SVMKernel[DenseMatrix[Double]] with LocalSVMKernel[DenseVector[Double]] with Serializable

    Permalink

    Mahalanobis kernel is an anisotropic generalization of the RBF Kernel, its definition is based on the so called Mahalanobis distance between two vectors x and y.

    Mahalanobis kernel is an anisotropic generalization of the RBF Kernel, its definition is based on the so called Mahalanobis distance between two vectors x and y.

    K(x,y) = h*exp(-(x - y)T . M . (x - y))

    In this implementation the symmetric positive semi-definite matrix M is assumed to be diagonal.

  51. class MixedEffectRegularizer extends CovarianceFunction[Int, Double, DenseMatrix[Double]] with LocalScalarKernel[Int]

    Permalink

    Created by mandar on 22/08/16.

  52. class MultiplicativeCovariance[Index] extends CompositeCovariance[Index]

    Permalink

    A kernel formed by multiplication of two kernels k(.,.) = k1(.,.) * k2(.,.)

  53. class NeuralNetworkKernel extends CovarianceFunction[DenseVector[Double], Double, DenseMatrix[Double]] with SVMKernel[DenseMatrix[Double]] with LocalSVMKernel[DenseVector[Double]] with Serializable

    Permalink

  54. class PeriodicCovFunc extends CovarianceFunction[Double, Double, DenseMatrix[Double]] with LocalScalarKernel[Double]

    Permalink
  55. class PeriodicKernel extends CovarianceFunction[DenseVector[Double], Double, DenseMatrix[Double]] with SVMKernel[DenseMatrix[Double]] with LocalScalarKernel[DenseVector[Double]] with Serializable

    Permalink

  56. class PolynomialKernel extends CovarianceFunction[DenseVector[Double], Double, DenseMatrix[Double]] with SVMKernel[DenseMatrix[Double]] with LocalSVMKernel[DenseVector[Double]] with Serializable

    Permalink

    Standard Polynomial SVM Kernel of the form K(x,y) = (xT .

    Standard Polynomial SVM Kernel of the form K(x,y) = (xT . y + 1.0)r

  57. class RBFCovFunc extends CovarianceFunction[Double, Double, DenseMatrix[Double]] with LocalScalarKernel[Double]

    Permalink
  58. class RBFKernel extends GenericRBFKernel[DenseVector[Double]] with SVMKernel[DenseMatrix[Double]] with Serializable

    Permalink
  59. class RationalQuadraticCovFunc extends CovarianceFunction[Double, Double, DenseMatrix[Double]] with LocalSVMKernel[Double]

    Permalink
  60. class RationalQuadraticKernel extends StationaryKernel[DenseVector[Double], Double, DenseMatrix[Double]] with SVMKernel[DenseMatrix[Double]] with LocalScalarKernel[DenseVector[Double]] with Serializable

    Permalink

    Rational Quadratic Kernel given by the expression K(x,y) = (1 + ||x-y||2/2μl2)-0.5 × μ

    Rational Quadratic Kernel given by the expression K(x,y) = (1 + ||x-y||2/2μl2)-0.5 × μ

  61. class SECovFunc extends RBFCovFunc

    Permalink
  62. class SEKernel extends RBFKernel

    Permalink

    Squared Exponential Kernel is a generalized RBF Kernel K(x,y) = h2*exp(-||x - y||2/2 × l2)

    Squared Exponential Kernel is a generalized RBF Kernel K(x,y) = h2*exp(-||x - y||2/2 × l2)

  63. trait SVMKernel[M] extends CovarianceFunction[DenseVector[Double], Double, M] with Serializable

    Permalink

    Defines an abstract class outlines the basic functionality requirements of an SVM Kernel

  64. class SVMKernelMatrix extends KernelMatrix[DenseMatrix[Double]] with Serializable

    Permalink

  65. class ScaledKernel[I] extends CovarianceFunction[I, Double, DenseMatrix[Double]] with LocalScalarKernel[I]

    Permalink

    Represents covariance function of a GP which is scaled version of a base GP.

    Represents covariance function of a GP which is scaled version of a base GP.

    z ~ GP(m(.), K(.,.))

    y = g(x)*z

    y ~ GP(g(x)*m(x), g(x)K(x,x')g(x'))

  66. class SeparableStationaryKernel[I, Kernel <: StationaryKernel[I, Double, DenseMatrix[Double]] with LocalScalarKernel[I]] extends MultiplicativeCovariance[I]

    Permalink

    Implementation of separable stationary kernels as defined in http://jmlr.csail.mit.edu/papers/volume2/genton01a/genton01a.pdf

    Implementation of separable stationary kernels as defined in http://jmlr.csail.mit.edu/papers/volume2/genton01a/genton01a.pdf

    K(x,y) = K1(x)×K2(y)

    I

    The index set or input domain over which the kernel function is evaluated.

    Kernel

    A kernel type which extends StationaryKernel as well as LocalScalarKernel

  67. abstract class StationaryKernel[T, V, M] extends CovarianceFunction[T, V, M]

    Permalink

    C(x,y) = Cs(||x-y||)

    Stationary Covariance Functions

    C(x,y) = Cs(||x-y||)

    An abstract representation of stationary kernel functions, this requires an implicit variable which represents how addition, subtraction etc are carried out for the input domain T

  68. class TStudentCovFunc extends CovarianceFunction[Double, Double, DenseMatrix[Double]] with LocalSVMKernel[Double]

    Permalink
  69. class TStudentKernel extends StationaryKernel[DenseVector[Double], Double, DenseMatrix[Double]] with SVMKernel[DenseMatrix[Double]] with LocalScalarKernel[DenseVector[Double]] with Serializable

    Permalink

    T-Student Kernel K(x,y) = 1/(1 + ||x - y||d)

    T-Student Kernel K(x,y) = 1/(1 + ||x - y||d)

  70. class TensorCombinationKernel[R, S] extends CompositeCovariance[(R, S)]

    Permalink

    Represents a kernel on a product space R × S

  71. class WaveCovFunc extends CovarianceFunction[Double, Double, DenseMatrix[Double]] with LocalSVMKernel[Double]

    Permalink
  72. class WaveKernel extends CovarianceFunction[DenseVector[Double], Double, DenseMatrix[Double]] with SVMKernel[DenseMatrix[Double]] with LocalSVMKernel[DenseVector[Double]] with Serializable

    Permalink

  73. class WaveletCovFunc extends CovarianceFunction[Double, Double, DenseMatrix[Double]] with LocalSVMKernel[Double]

    Permalink
  74. class WaveletKernel extends StationaryKernel[DenseVector[Double], Double, DenseMatrix[Double]] with SVMKernel[DenseMatrix[Double]] with LocalSVMKernel[DenseVector[Double]] with Serializable

    Permalink

  75. trait KernelOps[+This] extends Any

    Permalink

    Annotations
    @deprecated
    Deprecated

Value Members

  1. object CompositeCovariance extends Serializable

    Permalink
  2. object CovarianceFunction extends Serializable

    Permalink
  3. object CubicSplineARDKernel extends Serializable

    Permalink
  4. object GaussianSpectralKernel extends Serializable

    Permalink
  5. object GenExponentialKernel extends Serializable

    Permalink
  6. object KernelOpAdd extends KernelOpAdd with UFunc

    Permalink
  7. object KernelOpMult extends KernelOpMult with UFunc

    Permalink
  8. object KernelOps extends UFunc

    Permalink
  9. object KernelOuterAdd extends KernelOuterAdd with UFunc

    Permalink
  10. object KernelOuterMult extends KernelOuterMult with UFunc

    Permalink
  11. object SVMKernel extends Serializable

    Permalink

    Defines a global singleton object SVMKernel having functions which can construct kernel matrices.

  12. object ScaledKernel extends Serializable

    Permalink

Ungrouped