CatsConcurrentForTask

Default and reusable instance for CatsConcurrentForTask.

Default and reusable instance for CatsConcurrentForTask.

Globally available in scope, as it is returned by IO.catsAsync.

Companion
class
trait Concurrent[Task]
trait Async[Task]
trait LiftIO[Task]
trait Sync[Task]
trait Defer[Task]
trait Bracket[Task, Throwable]
class CatsBaseForTask[Throwable]
trait Bifunctor[[E, A] =>> IO[E, A]]
trait SemigroupK[[_] =>> IO[Throwable, _$3]]
trait CoflatMap[[_] =>> IO[Throwable, _$2]]
trait MonadError[Task, Throwable]
trait Monad[Task]
trait FlatMap[Task]
trait ApplicativeError[Task, Throwable]
trait Applicative[Task]
trait InvariantMonoidal[Task]
trait Apply[Task]
trait ApplyArityFunctions[Task]
trait InvariantSemigroupal[Task]
trait Semigroupal[Task]
trait Functor[Task]
trait Invariant[Task]
trait Serializable
class Object
trait Matchable
class Any

Document{}

def tuple17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7], f8: Task[A8], f9: Task[A9], f10: Task[A10], f11: Task[A11], f12: Task[A12], f13: Task[A13], f14: Task[A14], f15: Task[A15], f16: Task[A16]): Task[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16)]
Inherited from
ApplyArityFunctions
def ap15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f: Task[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14) => Z])(f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7], f8: Task[A8], f9: Task[A9], f10: Task[A10], f11: Task[A11], f12: Task[A12], f13: Task[A13], f14: Task[A14]): Task[Z]
Inherited from
ApplyArityFunctions
def map17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7], f8: Task[A8], f9: Task[A9], f10: Task[A10], f11: Task[A11], f12: Task[A12], f13: Task[A13], f14: Task[A14], f15: Task[A15], f16: Task[A16])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16) => Z): Task[Z]
Inherited from
ApplyArityFunctions
def map15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7], f8: Task[A8], f9: Task[A9], f10: Task[A10], f11: Task[A11], f12: Task[A12], f13: Task[A13], f14: Task[A14])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14) => Z): Task[Z]
Inherited from
ApplyArityFunctions
def tuple8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7]): Task[(A0, A1, A2, A3, A4, A5, A6, A7)]
Inherited from
ApplyArityFunctions
def ap4[A0, A1, A2, A3, Z](f: Task[(A0, A1, A2, A3) => Z])(f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3]): Task[Z]
Inherited from
ApplyArityFunctions
def tuple13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7], f8: Task[A8], f9: Task[A9], f10: Task[A10], f11: Task[A11], f12: Task[A12]): Task[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12)]
Inherited from
ApplyArityFunctions
def ap16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f: Task[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15) => Z])(f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7], f8: Task[A8], f9: Task[A9], f10: Task[A10], f11: Task[A11], f12: Task[A12], f13: Task[A13], f14: Task[A14], f15: Task[A15]): Task[Z]
Inherited from
ApplyArityFunctions
def tuple14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7], f8: Task[A8], f9: Task[A9], f10: Task[A10], f11: Task[A11], f12: Task[A12], f13: Task[A13]): Task[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13)]
Inherited from
ApplyArityFunctions
def map18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7], f8: Task[A8], f9: Task[A9], f10: Task[A10], f11: Task[A11], f12: Task[A12], f13: Task[A13], f14: Task[A14], f15: Task[A15], f16: Task[A16], f17: Task[A17])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17) => Z): Task[Z]
Inherited from
ApplyArityFunctions
def map10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7], f8: Task[A8], f9: Task[A9])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9) => Z): Task[Z]
Inherited from
ApplyArityFunctions
def ap22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f: Task[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21) => Z])(f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7], f8: Task[A8], f9: Task[A9], f10: Task[A10], f11: Task[A11], f12: Task[A12], f13: Task[A13], f14: Task[A14], f15: Task[A15], f16: Task[A16], f17: Task[A17], f18: Task[A18], f19: Task[A19], f20: Task[A20], f21: Task[A21]): Task[Z]
Inherited from
ApplyArityFunctions
def map11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7], f8: Task[A8], f9: Task[A9], f10: Task[A10])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10) => Z): Task[Z]
Inherited from
ApplyArityFunctions
def tuple7[A0, A1, A2, A3, A4, A5, A6, Z](f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6]): Task[(A0, A1, A2, A3, A4, A5, A6)]
Inherited from
ApplyArityFunctions
def tuple20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7], f8: Task[A8], f9: Task[A9], f10: Task[A10], f11: Task[A11], f12: Task[A12], f13: Task[A13], f14: Task[A14], f15: Task[A15], f16: Task[A16], f17: Task[A17], f18: Task[A18], f19: Task[A19]): Task[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19)]
Inherited from
ApplyArityFunctions
def ap12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f: Task[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11) => Z])(f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7], f8: Task[A8], f9: Task[A9], f10: Task[A10], f11: Task[A11]): Task[Z]
Inherited from
ApplyArityFunctions
def tuple11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7], f8: Task[A8], f9: Task[A9], f10: Task[A10]): Task[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10)]
Inherited from
ApplyArityFunctions
def ap14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f: Task[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13) => Z])(f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7], f8: Task[A8], f9: Task[A9], f10: Task[A10], f11: Task[A11], f12: Task[A12], f13: Task[A13]): Task[Z]
Inherited from
ApplyArityFunctions
def tuple12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7], f8: Task[A8], f9: Task[A9], f10: Task[A10], f11: Task[A11]): Task[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11)]
Inherited from
ApplyArityFunctions
def map8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7])(f: (A0, A1, A2, A3, A4, A5, A6, A7) => Z): Task[Z]
Inherited from
ApplyArityFunctions
def tuple15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7], f8: Task[A8], f9: Task[A9], f10: Task[A10], f11: Task[A11], f12: Task[A12], f13: Task[A13], f14: Task[A14]): Task[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14)]
Inherited from
ApplyArityFunctions
def ap3[A0, A1, A2, Z](f: Task[(A0, A1, A2) => Z])(f0: Task[A0], f1: Task[A1], f2: Task[A2]): Task[Z]
Inherited from
ApplyArityFunctions
def map20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7], f8: Task[A8], f9: Task[A9], f10: Task[A10], f11: Task[A11], f12: Task[A12], f13: Task[A13], f14: Task[A14], f15: Task[A15], f16: Task[A16], f17: Task[A17], f18: Task[A18], f19: Task[A19])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19) => Z): Task[Z]
Inherited from
ApplyArityFunctions
def ap10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f: Task[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9) => Z])(f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7], f8: Task[A8], f9: Task[A9]): Task[Z]
Inherited from
ApplyArityFunctions
def ap11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f: Task[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10) => Z])(f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7], f8: Task[A8], f9: Task[A9], f10: Task[A10]): Task[Z]
Inherited from
ApplyArityFunctions
def map9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7], f8: Task[A8])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8) => Z): Task[Z]
Inherited from
ApplyArityFunctions
def map21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7], f8: Task[A8], f9: Task[A9], f10: Task[A10], f11: Task[A11], f12: Task[A12], f13: Task[A13], f14: Task[A14], f15: Task[A15], f16: Task[A16], f17: Task[A17], f18: Task[A18], f19: Task[A19], f20: Task[A20])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20) => Z): Task[Z]
Inherited from
ApplyArityFunctions
def tuple3[A0, A1, A2, Z](f0: Task[A0], f1: Task[A1], f2: Task[A2]): Task[(A0, A1, A2)]
Inherited from
ApplyArityFunctions
def ap17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f: Task[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16) => Z])(f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7], f8: Task[A8], f9: Task[A9], f10: Task[A10], f11: Task[A11], f12: Task[A12], f13: Task[A13], f14: Task[A14], f15: Task[A15], f16: Task[A16]): Task[Z]
Inherited from
ApplyArityFunctions
def ap9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f: Task[(A0, A1, A2, A3, A4, A5, A6, A7, A8) => Z])(f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7], f8: Task[A8]): Task[Z]
Inherited from
ApplyArityFunctions
def ap5[A0, A1, A2, A3, A4, Z](f: Task[(A0, A1, A2, A3, A4) => Z])(f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4]): Task[Z]
Inherited from
ApplyArityFunctions
def ap6[A0, A1, A2, A3, A4, A5, Z](f: Task[(A0, A1, A2, A3, A4, A5) => Z])(f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5]): Task[Z]
Inherited from
ApplyArityFunctions
def map22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7], f8: Task[A8], f9: Task[A9], f10: Task[A10], f11: Task[A11], f12: Task[A12], f13: Task[A13], f14: Task[A14], f15: Task[A15], f16: Task[A16], f17: Task[A17], f18: Task[A18], f19: Task[A19], f20: Task[A20], f21: Task[A21])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21) => Z): Task[Z]
Inherited from
ApplyArityFunctions
def ap19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f: Task[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18) => Z])(f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7], f8: Task[A8], f9: Task[A9], f10: Task[A10], f11: Task[A11], f12: Task[A12], f13: Task[A13], f14: Task[A14], f15: Task[A15], f16: Task[A16], f17: Task[A17], f18: Task[A18]): Task[Z]
Inherited from
ApplyArityFunctions
def tuple22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7], f8: Task[A8], f9: Task[A9], f10: Task[A10], f11: Task[A11], f12: Task[A12], f13: Task[A13], f14: Task[A14], f15: Task[A15], f16: Task[A16], f17: Task[A17], f18: Task[A18], f19: Task[A19], f20: Task[A20], f21: Task[A21]): Task[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21)]
Inherited from
ApplyArityFunctions
def ap18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f: Task[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17) => Z])(f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7], f8: Task[A8], f9: Task[A9], f10: Task[A10], f11: Task[A11], f12: Task[A12], f13: Task[A13], f14: Task[A14], f15: Task[A15], f16: Task[A16], f17: Task[A17]): Task[Z]
Inherited from
ApplyArityFunctions
def map16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7], f8: Task[A8], f9: Task[A9], f10: Task[A10], f11: Task[A11], f12: Task[A12], f13: Task[A13], f14: Task[A14], f15: Task[A15])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15) => Z): Task[Z]
Inherited from
ApplyArityFunctions
def tuple16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7], f8: Task[A8], f9: Task[A9], f10: Task[A10], f11: Task[A11], f12: Task[A12], f13: Task[A13], f14: Task[A14], f15: Task[A15]): Task[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15)]
Inherited from
ApplyArityFunctions
def map19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7], f8: Task[A8], f9: Task[A9], f10: Task[A10], f11: Task[A11], f12: Task[A12], f13: Task[A13], f14: Task[A14], f15: Task[A15], f16: Task[A16], f17: Task[A17], f18: Task[A18])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18) => Z): Task[Z]
Inherited from
ApplyArityFunctions
def map5[A0, A1, A2, A3, A4, Z](f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4])(f: (A0, A1, A2, A3, A4) => Z): Task[Z]
Inherited from
ApplyArityFunctions
def tuple6[A0, A1, A2, A3, A4, A5, Z](f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5]): Task[(A0, A1, A2, A3, A4, A5)]
Inherited from
ApplyArityFunctions
def map7[A0, A1, A2, A3, A4, A5, A6, Z](f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6])(f: (A0, A1, A2, A3, A4, A5, A6) => Z): Task[Z]
Inherited from
ApplyArityFunctions
def map12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7], f8: Task[A8], f9: Task[A9], f10: Task[A10], f11: Task[A11])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11) => Z): Task[Z]
Inherited from
ApplyArityFunctions
def ap20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f: Task[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19) => Z])(f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7], f8: Task[A8], f9: Task[A9], f10: Task[A10], f11: Task[A11], f12: Task[A12], f13: Task[A13], f14: Task[A14], f15: Task[A15], f16: Task[A16], f17: Task[A17], f18: Task[A18], f19: Task[A19]): Task[Z]
Inherited from
ApplyArityFunctions
def tuple19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7], f8: Task[A8], f9: Task[A9], f10: Task[A10], f11: Task[A11], f12: Task[A12], f13: Task[A13], f14: Task[A14], f15: Task[A15], f16: Task[A16], f17: Task[A17], f18: Task[A18]): Task[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18)]
Inherited from
ApplyArityFunctions
def ap13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f: Task[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12) => Z])(f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7], f8: Task[A8], f9: Task[A9], f10: Task[A10], f11: Task[A11], f12: Task[A12]): Task[Z]
Inherited from
ApplyArityFunctions
def map6[A0, A1, A2, A3, A4, A5, Z](f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5])(f: (A0, A1, A2, A3, A4, A5) => Z): Task[Z]
Inherited from
ApplyArityFunctions
def ap21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f: Task[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20) => Z])(f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7], f8: Task[A8], f9: Task[A9], f10: Task[A10], f11: Task[A11], f12: Task[A12], f13: Task[A13], f14: Task[A14], f15: Task[A15], f16: Task[A16], f17: Task[A17], f18: Task[A18], f19: Task[A19], f20: Task[A20]): Task[Z]
Inherited from
ApplyArityFunctions
def tuple21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7], f8: Task[A8], f9: Task[A9], f10: Task[A10], f11: Task[A11], f12: Task[A12], f13: Task[A13], f14: Task[A14], f15: Task[A15], f16: Task[A16], f17: Task[A17], f18: Task[A18], f19: Task[A19], f20: Task[A20]): Task[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20)]
Inherited from
ApplyArityFunctions
def tuple5[A0, A1, A2, A3, A4, Z](f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4]): Task[(A0, A1, A2, A3, A4)]
Inherited from
ApplyArityFunctions
def map4[A0, A1, A2, A3, Z](f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3])(f: (A0, A1, A2, A3) => Z): Task[Z]
Inherited from
ApplyArityFunctions
def ap8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f: Task[(A0, A1, A2, A3, A4, A5, A6, A7) => Z])(f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7]): Task[Z]
Inherited from
ApplyArityFunctions
def ap7[A0, A1, A2, A3, A4, A5, A6, Z](f: Task[(A0, A1, A2, A3, A4, A5, A6) => Z])(f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6]): Task[Z]
Inherited from
ApplyArityFunctions
def tuple9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7], f8: Task[A8]): Task[(A0, A1, A2, A3, A4, A5, A6, A7, A8)]
Inherited from
ApplyArityFunctions
def map13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7], f8: Task[A8], f9: Task[A9], f10: Task[A10], f11: Task[A11], f12: Task[A12])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12) => Z): Task[Z]
Inherited from
ApplyArityFunctions
def map3[A0, A1, A2, Z](f0: Task[A0], f1: Task[A1], f2: Task[A2])(f: (A0, A1, A2) => Z): Task[Z]
Inherited from
ApplyArityFunctions
def tuple4[A0, A1, A2, A3, Z](f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3]): Task[(A0, A1, A2, A3)]
Inherited from
ApplyArityFunctions
def tuple18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7], f8: Task[A8], f9: Task[A9], f10: Task[A10], f11: Task[A11], f12: Task[A12], f13: Task[A13], f14: Task[A14], f15: Task[A15], f16: Task[A16], f17: Task[A17]): Task[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17)]
Inherited from
ApplyArityFunctions
def tuple10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7], f8: Task[A8], f9: Task[A9]): Task[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9)]
Inherited from
ApplyArityFunctions
def map14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f0: Task[A0], f1: Task[A1], f2: Task[A2], f3: Task[A3], f4: Task[A4], f5: Task[A5], f6: Task[A6], f7: Task[A7], f8: Task[A8], f9: Task[A9], f10: Task[A10], f11: Task[A11], f12: Task[A12], f13: Task[A13])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13) => Z): Task[Z]
Inherited from
ApplyArityFunctions

Value members

Inherited methods

@inline
final def *>[A, B](fa: Task[A])(fb: Task[B]): Task[B]

Alias for productR.

Alias for productR.

Inherited from
Apply
@inline
final def <*[A, B](fa: Task[A])(fb: Task[B]): Task[A]

Alias for productL.

Alias for productL.

Inherited from
Apply
@inline
final def <*>[A, B](ff: Task[A => B])(fa: Task[A]): Task[B]

Alias for ap.

Alias for ap.

Inherited from
Apply
override def adaptError[A](fa: Task[A])(pf: PartialFunction[Throwable, Throwable]): Task[A]
Definition Classes
MonadError -> ApplicativeError
Inherited from
MonadError
def algebra[A]: Semigroup[IO[Throwable, A]]

Given a type A, create a concrete Semigroup[F[A]].

Given a type A, create a concrete Semigroup[F[A]].

Example:

scala> import cats.implicits._
scala> val s: Semigroup[List[Int]] = SemigroupK[List].algebra[Int]
Inherited from
SemigroupK
override def ap[A, B](ff: IO[Throwable, A => B])(fa: IO[Throwable, A]): IO[Throwable, B]
Definition Classes
CatsBaseForTask -> FlatMap -> Apply
Inherited from
CatsBaseForTask
override def ap2[A, B, Z](ff: Task[(A, B) => Z])(fa: Task[A], fb: Task[B]): Task[Z]
Definition Classes
FlatMap -> Apply
Inherited from
FlatMap
def as[A, B](fa: Task[A], b: B): Task[B]

Replaces the A value in F[A] with the supplied value.

Replaces the A value in F[A] with the supplied value.

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList

scala> Functor[List].as(List(1,2,3), "hello")
res0: List[String] = List(hello, hello, hello)
Inherited from
Functor
override def async[A](k: Either[Throwable, A] => Unit => Unit): Task[A]
Definition Classes
Inherited from
CatsAsyncForTask
override def asyncF[A](k: Either[Throwable, A] => Unit => Task[Unit]): Task[A]
Definition Classes
Inherited from
CatsAsyncForTask
override def attempt[A](fa: IO[Throwable, A]): IO[Throwable, Either[Throwable, A]]
Definition Classes
CatsBaseForTask -> ApplicativeError
Inherited from
CatsBaseForTask
def attemptNarrow[EE <: Throwable, A](fa: Task[A])(tag: ClassTag[EE], ev: EE <:< Throwable): Task[Either[EE, A]]

Similar to attempt, but it only handles errors of type EE.

Similar to attempt, but it only handles errors of type EE.

Inherited from
ApplicativeError
def attemptT[A](fa: Task[A]): EitherT[Task, Throwable, A]

Similar to attempt, but wraps the result in a cats.data.EitherT for convenience.

Similar to attempt, but wraps the result in a cats.data.EitherT for convenience.

Inherited from
ApplicativeError
def attemptTap[A, B](fa: Task[A])(f: Either[Throwable, A] => Task[B]): Task[A]

Reifies the value or error of the source and performs an effect on the result, then recovers the original value or error back into F.

Reifies the value or error of the source and performs an effect on the result, then recovers the original value or error back into F.

Note that if the effect returned by f fails, the resulting effect will fail too.

Alias for fa.attempt.flatTap(f).rethrow for convenience.

Example:

scala> import cats.implicits._
scala> import scala.util.{Try, Success, Failure}

scala> def checkError(result: Either[Throwable, Int]): Try[String] = result.fold(_ => Failure(new java.lang.Exception), _ => Success("success"))

scala> val a: Try[Int] = Failure(new Throwable("failed"))
scala> a.attemptTap(checkError)
res0: scala.util.Try[Int] = Failure(java.lang.Exception)

scala> val b: Try[Int] = Success(1)
scala> b.attemptTap(checkError)
res1: scala.util.Try[Int] = Success(1)
Inherited from
MonadError
def background[A](fa: Task[A]): Resource[Task, Task[A]]

Returns a resource that will start execution of the effect in the background.

Returns a resource that will start execution of the effect in the background.

In case the resource is closed while the effect is still running (e.g. due to a failure in use), the background action will be canceled.

A basic example with IO:

 val longProcess = (IO.sleep(5.seconds) *> IO(println("Ping!"))).foreverM

 val srv: Resource[IO, ServerBinding[IO]] = for {
   _ <- longProcess.background
   server <- server.run
 } yield server

 val application = srv.use(binding => IO(println("Bound to " + binding)) *> IO.never)

Here, we are starting a background process as part of the application's startup. Afterwards, we initialize a server. Then, we use that server forever using IO.never. This will ensure we never close the server resource unless somebody cancels the whole application action.

If at some point of using the resource you want to wait for the result of the background action, you can do so by sequencing the value inside the resource (it's equivalent to join on Fiber).

This will start the background process, run another action, and wait for the result of the background process:

 longProcess.background.use(await => anotherProcess *> await)

In case the result of such an action is canceled, both processes will receive cancelation signals. The same result can be achieved by using anotherProcess &> longProcess with the Parallel type class syntax.

Inherited from
Concurrent
override def bimap[A, B, C, D](fab: IO[A, B])(f: A => C, g: B => D): IO[C, D]
Definition Classes
CatsBaseForTask -> Bifunctor
Inherited from
CatsBaseForTask
override def bracket[A, B](acquire: Task[A])(use: A => Task[B])(release: A => Task[Unit]): Task[B]
Definition Classes
CatsAsyncForTask -> Bracket
Inherited from
CatsAsyncForTask
override def bracketCase[A, B](acquire: Task[A])(use: A => Task[B])(release: (A, ExitCase[Throwable]) => Task[Unit]): Task[B]
Definition Classes
CatsAsyncForTask -> Bracket
Inherited from
CatsAsyncForTask
override def cancelable[A](k: Either[Throwable, A] => Unit => CancelToken[Task]): Task[A]
Definition Classes
CatsConcurrentForTask -> Concurrent
Inherited from
CatsConcurrentForTask
override def catchNonFatal[A](a: => A)(ev: Throwable <:< Throwable): IO[Throwable, A]
Definition Classes
CatsBaseForTask -> ApplicativeError
Inherited from
CatsBaseForTask
override def catchNonFatalEval[A](a: Eval[A])(ev: Throwable <:< Throwable): IO[Throwable, A]
Definition Classes
CatsBaseForTask -> ApplicativeError
Inherited from
CatsBaseForTask
def catchOnly[T >: Null <: Throwable]: CatchOnlyPartiallyApplied[T, Task, Throwable]

Evaluates the specified block, catching exceptions of the specified type. Uncaught exceptions are propagated.

Evaluates the specified block, catching exceptions of the specified type. Uncaught exceptions are propagated.

Inherited from
ApplicativeError
override def coflatMap[A, B](fa: IO[Throwable, A])(f: IO[Throwable, A] => B): IO[Throwable, B]
Definition Classes
CatsBaseForTask -> CoflatMap
Inherited from
CatsBaseForTask
override def coflatten[A](fa: IO[Throwable, A]): IO[Throwable, IO[Throwable, A]]
Definition Classes
CatsBaseForTask -> CoflatMap
Inherited from
CatsBaseForTask
override def combineK[A](ta: IO[Throwable, A], tb: IO[Throwable, A]): IO[Throwable, A]
Definition Classes
CatsBaseForTask -> SemigroupK
Inherited from
CatsBaseForTask
def combineKEval[A](x: IO[Throwable, A], y: Eval[IO[Throwable, A]]): Eval[IO[Throwable, A]]

Similar to combineK but uses Eval to allow for laziness in the second argument. This can allow for "short-circuiting" of computations.

Similar to combineK but uses Eval to allow for laziness in the second argument. This can allow for "short-circuiting" of computations.

NOTE: the default implementation of combineKEval does not short-circuit computations. For data structures that can benefit from laziness, SemigroupK instances should override this method.

In the following example, x.combineK(bomb) would result in an error, but combineKEval "short-circuits" the computation. x is Some and thus the result of bomb doesn't even need to be evaluated in order to determine that the result of combineKEval should be x.

scala> import cats.{Eval, Later}
scala> import cats.implicits._
scala> val bomb: Eval[Option[Int]] = Later(sys.error("boom"))
scala> val x: Option[Int] = Some(42)
scala> x.combineKEval(bomb).value
res0: Option[Int] = Some(42)
Inherited from
SemigroupK
def compose[G[_]](`evidence$1`: Applicative[G]): Applicative[[α] =>> Task[G[α]]]

Compose an Applicative[F] and an Applicative[G] into an Applicative[λ[α => F[G[α]]]].

Compose an Applicative[F] and an Applicative[G] into an Applicative[λ[α => F[G[α]]]].

Example:

scala> import cats.implicits._

scala> val alo = Applicative[List].compose[Option]

scala> alo.pure(3)
res0: List[Option[Int]] = List(Some(3))

scala> alo.product(List(None, Some(true), Some(false)), List(Some(2), None))
res1: List[Option[(Boolean, Int)]] = List(None, None, Some((true,2)), None, Some((false,2)), None)
Inherited from
Applicative
def compose[G[_]](`evidence$1`: Invariant[G]): Invariant[[α] =>> Task[G[α]]]

Compose Invariant F[_] and G[_] then produce Invariant[F[G[_]]] using their imap.

Compose Invariant F[_] and G[_] then produce Invariant[F[G[_]]] using their imap.

Example:

scala> import cats.implicits._
scala> import scala.concurrent.duration._

scala> val durSemigroupList: Semigroup[List[FiniteDuration]] =
    | Invariant[Semigroup].compose[List].imap(Semigroup[List[Long]])(Duration.fromNanos)(_.toNanos)
scala> durSemigroupList.combine(List(2.seconds, 3.seconds), List(4.seconds))
res1: List[FiniteDuration] = List(2 seconds, 3 seconds, 4 seconds)
Inherited from
Invariant
def compose[G[_]](`evidence$1`: Apply[G]): Apply[[α] =>> Task[G[α]]]

Compose an Apply[F] and an Apply[G] into an Apply[λ[α => F[G[α]]]].

Compose an Apply[F] and an Apply[G] into an Apply[λ[α => F[G[α]]]].

Example:

scala> import cats.implicits._

scala> val alo = Apply[List].compose[Option]

scala> alo.product(List(None, Some(true), Some(false)), List(Some(2), None))
res1: List[Option[(Boolean, Int)]] = List(None, None, Some((true,2)), None, Some((false,2)), None)
Inherited from
Apply
def compose[G[_]](`evidence$1`: Functor[G]): Functor[[α] =>> Task[G[α]]]
Inherited from
Functor
def compose[G[_, _]](G0: Bifunctor[G]): Bifunctor[[α, β] =>> IO[G[α, β], G[α, β]]]

The composition of two Bifunctors is itself a Bifunctor

The composition of two Bifunctors is itself a Bifunctor

Inherited from
Bifunctor
def compose[G[_]]: SemigroupK[[α] =>> IO[Throwable, G[α]]]

"Compose" with a G[_] type to form a SemigroupK for λ[α => F[G[α]]]. Note that this universally works for any G, because the "inner" structure isn't considered when combining two instances.

"Compose" with a G[_] type to form a SemigroupK for λ[α => F[G[α]]]. Note that this universally works for any G, because the "inner" structure isn't considered when combining two instances.

Example:

scala> import cats.implicits._
scala> type ListOption[A] = List[Option[A]]
scala> val s: SemigroupK[ListOption] = SemigroupK[List].compose[Option]
scala> s.combineK(List(Some(1), None, Some(2)), List(Some(3), None))
res0: List[Option[Int]] = List(Some(1), None, Some(2), Some(3), None)
Inherited from
SemigroupK
def composeApply[G[_]](`evidence$1`: Apply[G]): InvariantSemigroupal[[α] =>> Task[G[α]]]
Inherited from
InvariantSemigroupal
override def composeContravariant[G[_]](`evidence$2`: Contravariant[G]): Contravariant[[α] =>> Task[G[α]]]
Definition Classes
Functor -> Invariant
Inherited from
Functor
def composeContravariantMonoidal[G[_]](`evidence$2`: ContravariantMonoidal[G]): ContravariantMonoidal[[α] =>> Task[G[α]]]

Compose an Applicative[F] and a ContravariantMonoidal[G] into a ContravariantMonoidal[λ[α => F[G[α]]]].

Compose an Applicative[F] and a ContravariantMonoidal[G] into a ContravariantMonoidal[λ[α => F[G[α]]]].

Example:

scala> import cats.kernel.Comparison
scala> import cats.implicits._

// compares strings by alphabetical order
scala> val alpha: Order[String] = Order[String]

// compares strings by their length
scala> val strLength: Order[String] = Order.by[String, Int](_.length)

scala> val stringOrders: List[Order[String]] = List(alpha, strLength)

// first comparison is with alpha order, second is with string length
scala> stringOrders.map(o => o.comparison("abc", "de"))
res0: List[Comparison] = List(LessThan, GreaterThan)

scala> val le = Applicative[List].composeContravariantMonoidal[Order]

// create Int orders that convert ints to strings and then use the string orders
scala> val intOrders: List[Order[Int]] = le.contramap(stringOrders)(_.toString)

// first comparison is with alpha order, second is with string length
scala> intOrders.map(o => o.comparison(12, 3))
res1: List[Comparison] = List(LessThan, GreaterThan)

// create the `product` of the string order list and the int order list
// `p` contains a list of the following orders:
// 1. (alpha comparison on strings followed by alpha comparison on ints)
// 2. (alpha comparison on strings followed by length comparison on ints)
// 3. (length comparison on strings followed by alpha comparison on ints)
// 4. (length comparison on strings followed by length comparison on ints)
scala> val p: List[Order[(String, Int)]] = le.product(stringOrders, intOrders)

scala> p.map(o => o.comparison(("abc", 12), ("def", 3)))
res2: List[Comparison] = List(LessThan, LessThan, LessThan, GreaterThan)
Inherited from
Applicative
def composeFunctor[G[_]](`evidence$2`: Functor[G]): Invariant[[α] =>> Task[G[α]]]

Compose Invariant F[_] and Functor G[_] then produce Invariant[F[G[_]]] using F's imap and G's map.

Compose Invariant F[_] and Functor G[_] then produce Invariant[F[G[_]]] using F's imap and G's map.

Example:

scala> import cats.implicits._
scala> import scala.concurrent.duration._

scala> val durSemigroupList: Semigroup[List[FiniteDuration]] =
    | Invariant[Semigroup]
    |   .composeFunctor[List]
    |   .imap(Semigroup[List[Long]])(Duration.fromNanos)(_.toNanos)
scala> durSemigroupList.combine(List(2.seconds, 3.seconds), List(4.seconds))
res1: List[FiniteDuration] = List(2 seconds, 3 seconds, 4 seconds)
Inherited from
Invariant
def continual[A, B](fa: Task[A])(f: Either[Throwable, A] => Task[B]): Task[B]

If no interruption happens during the execution of this method, it behaves like .attempt.flatMap.

If no interruption happens during the execution of this method, it behaves like .attempt.flatMap.

Unlike .attempt.flatMap however, in the presence of interruption this method offers the continual guarantee: fa is interruptible, but if it completes execution, the effects of f are guaranteed to execute. This does not hold for attempt.flatMap since interruption can happen in between flatMap steps.

The typical use case for this function arises in the implementation of concurrent abstractions, where you have asynchronous operations waiting on some condition (which have to be interruptible), mixed with operations that modify some shared state if the condition holds true (which need to be guaranteed to happen or the state will be inconsistent).

Note that for the use case above:

  • We cannot use:
waitingOp.bracket(..., modifyOp)

because it makes waitingOp uninterruptible.

  • We cannot use
waitingOp.guaranteeCase {
  case Success => modifyOp(???)
  ...

if we need to use the result of waitingOp.

  • We cannot use
waitingOp.attempt.flatMap(modifyOp)

because it could be interrupted after waitingOp is done, but before modifyOp executes.

To access this implementation as a standalone function, you can use Concurrent.continual in the companion object.

Inherited from
Concurrent
@nowarn("cat=deprecation")
final override def defer[A](fa: => Task[A]): Task[A]

Alias for suspend that suspends the evaluation of an F reference and implements cats.Defer typeclass.

Alias for suspend that suspends the evaluation of an F reference and implements cats.Defer typeclass.

Definition Classes
Sync -> Defer
Inherited from
Sync
override def delay[A](thunk: => A): Task[A]
Definition Classes
Inherited from
CatsAsyncForTask
def ensure[A](fa: Task[A])(error: => Throwable)(predicate: A => Boolean): Task[A]

Turns a successful value into an error if it does not satisfy a given predicate.

Turns a successful value into an error if it does not satisfy a given predicate.

Inherited from
MonadError
def ensureOr[A](fa: Task[A])(error: A => Throwable)(predicate: A => Boolean): Task[A]

Turns a successful value into an error specified by the error function if it does not satisfy a given predicate.

Turns a successful value into an error specified by the error function if it does not satisfy a given predicate.

Inherited from
MonadError
def fix[A](fn: Task[A] => Task[A]): Task[A]

Defer instances, like functions, parsers, generators, IO, etc... often are used in recursive settings where this function is useful

Defer instances, like functions, parsers, generators, IO, etc... often are used in recursive settings where this function is useful

fix(fn) == fn(fix(fn))

example:

val parser: P[Int] = Defer[P].fix[Int] { rec => CharsIn("0123456789") | P("(") ~ rec ~ P(")") }

Note, fn may not yield a terminating value in which case both of the above F[A] run forever.

Inherited from
Defer
override def flatMap[A, B](fa: IO[Throwable, A])(f: A => IO[Throwable, B]): IO[Throwable, B]
Definition Classes
CatsBaseForTask -> FlatMap
Inherited from
CatsBaseForTask
def flatTap[A, B](fa: Task[A])(f: A => Task[B]): Task[A]

Apply a monadic function and discard the result while keeping the effect.

Apply a monadic function and discard the result while keeping the effect.

scala> import cats._, implicits._
scala> Option(1).flatTap(_ => None)
res0: Option[Int] = None
scala> Option(1).flatTap(_ => Some("123"))
res1: Option[Int] = Some(1)
scala> def nCats(n: Int) = List.fill(n)("cat")
nCats: (n: Int)List[String]
scala> List[Int](0).flatTap(nCats)
res2: List[Int] = List()
scala> List[Int](4).flatTap(nCats)
res3: List[Int] = List(4, 4, 4, 4)
Inherited from
FlatMap
override def flatten[A](ffa: IO[Throwable, IO[Throwable, A]]): IO[Throwable, A]
Definition Classes
CatsBaseForTask -> FlatMap
Inherited from
CatsBaseForTask
final def fmap[A, B](fa: Task[A])(f: A => B): Task[B]

Alias for map, since map can't be injected as syntax if the implementing type already had a built-in .map method.

Alias for map, since map can't be injected as syntax if the implementing type already had a built-in .map method.

Example:

scala> import cats.implicits._

scala> val m: Map[Int, String] = Map(1 -> "hi", 2 -> "there", 3 -> "you")

scala> m.fmap(_ ++ "!")
res0: Map[Int,String] = Map(1 -> hi!, 2 -> there!, 3 -> you!)
Inherited from
Functor
@noop
def foreverM[A, B](fa: Task[A]): Task[B]

Like an infinite loop of >> calls. This is most useful effect loops that you want to run forever in for instance a server.

Like an infinite loop of >> calls. This is most useful effect loops that you want to run forever in for instance a server.

This will be an infinite loop, or it will return an F[Nothing].

Be careful using this. For instance, a List of length k will produce a list of length k^n at iteration n. This means if k = 0, we return an empty list, if k = 1, we loop forever allocating single element lists, but if we have a k > 1, we will allocate exponentially increasing memory and very quickly OOM.

Inherited from
FlatMap
def fproduct[A, B](fa: Task[A])(f: A => B): Task[(A, B)]

Tuple the values in fa with the result of applying a function with the value

Tuple the values in fa with the result of applying a function with the value

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption

scala> Functor[Option].fproduct(Option(42))(_.toString)
res0: Option[(Int, String)] = Some((42,42))
Inherited from
Functor
def fproductLeft[A, B](fa: Task[A])(f: A => B): Task[(B, A)]

Pair the result of function application with A.

Pair the result of function application with A.

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption

scala> Functor[Option].fproductLeft(Option(42))(_.toString)
res0: Option[(String, Int)] = Some((42,42))
Inherited from
Functor
def fromEither[A](x: Either[Throwable, A]): Task[A]

Convert from scala.Either

Convert from scala.Either

Example:

scala> import cats.ApplicativeError
scala> import cats.instances.option._

scala> ApplicativeError[Option, Unit].fromEither(Right(1))
res0: scala.Option[Int] = Some(1)

scala> ApplicativeError[Option, Unit].fromEither(Left(()))
res1: scala.Option[Nothing] = None
Inherited from
ApplicativeError
def fromOption[A](oa: Option[A], ifEmpty: => Throwable): Task[A]

Convert from scala.Option

Convert from scala.Option

Example:

scala> import cats.implicits._
scala> import cats.ApplicativeError
scala> val F = ApplicativeError[Either[String, *], String]

scala> F.fromOption(Some(1), "Empty")
res0: scala.Either[String, Int] = Right(1)

scala> F.fromOption(Option.empty[Int], "Empty")
res1: scala.Either[String, Int] = Left(Empty)
Inherited from
ApplicativeError
override def fromTry[A](t: Try[A])(ev: Throwable <:< Throwable): IO[Throwable, A]
Definition Classes
CatsBaseForTask -> ApplicativeError
Inherited from
CatsBaseForTask
def fromValidated[A](x: Validated[Throwable, A]): Task[A]

Convert from cats.data.Validated

Convert from cats.data.Validated

Example:

scala> import cats.implicits._
scala> import cats.ApplicativeError

scala> ApplicativeError[Option, Unit].fromValidated(1.valid[Unit])
res0: scala.Option[Int] = Some(1)

scala> ApplicativeError[Option, Unit].fromValidated(().invalid[Int])
res1: scala.Option[Int] = None
Inherited from
ApplicativeError
override def guarantee[A](acquire: Task[A])(finalizer: Task[Unit]): Task[A]
Definition Classes
CatsAsyncForTask -> Bracket
Inherited from
CatsAsyncForTask
override def guaranteeCase[A](acquire: Task[A])(finalizer: ExitCase[Throwable] => Task[Unit]): Task[A]
Definition Classes
CatsAsyncForTask -> Bracket
Inherited from
CatsAsyncForTask
override def handleError[A](fa: IO[Throwable, A])(f: Throwable => A): IO[Throwable, A]
Definition Classes
CatsBaseForTask -> ApplicativeError
Inherited from
CatsBaseForTask
override def handleErrorWith[A](fa: IO[Throwable, A])(f: Throwable => IO[Throwable, A]): IO[Throwable, A]
Definition Classes
CatsBaseForTask -> ApplicativeError
Inherited from
CatsBaseForTask
@noop
def ifA[A](fcond: Task[Boolean])(ifTrue: Task[A], ifFalse: Task[A]): Task[A]

An if-then-else lifted into the F context. This function combines the effects of the fcond condition and of the two branches, in the order in which they are given.

An if-then-else lifted into the F context. This function combines the effects of the fcond condition and of the two branches, in the order in which they are given.

The value of the result is, depending on the value of the condition, the value of the first argument, or the value of the second argument.

Example:

scala> import cats.implicits._

scala> val b1: Option[Boolean] = Some(true)
scala> val asInt1: Option[Int] = Apply[Option].ifA(b1)(Some(1), Some(0))
scala> asInt1.get
res0: Int = 1

scala> val b2: Option[Boolean] = Some(false)
scala> val asInt2: Option[Int] = Apply[Option].ifA(b2)(Some(1), Some(0))
scala> asInt2.get
res1: Int = 0

scala> val b3: Option[Boolean] = Some(true)
scala> val asInt3: Option[Int] = Apply[Option].ifA(b3)(Some(1), None)
asInt2: Option[Int] = None

Inherited from
Apply
@noop
def ifElseM[A](branches: (Task[Boolean], Task[A])*)(els: Task[A]): Task[A]

Simulates an if/else-if/else in the context of an F. It evaluates conditions until one evaluates to true, and returns the associated F[A]. If no condition is true, returns els.

Simulates an if/else-if/else in the context of an F. It evaluates conditions until one evaluates to true, and returns the associated F[A]. If no condition is true, returns els.

scala> import cats._
scala> Monad[Eval].ifElseM(Eval.later(false) -> Eval.later(1), Eval.later(true) -> Eval.later(2))(Eval.later(5)).value
res0: Int = 2

Based on a gist by Daniel Spiewak with a stack-safe implementation due to P. Oscar Boykin

See also
Inherited from
Monad
@noop
def ifF[A](fb: Task[Boolean])(ifTrue: => A, ifFalse: => A): Task[A]

Lifts if to Functor

Lifts if to Functor

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList

scala> Functor[List].ifF(List(true, false, false))(1, 0)
res0: List[Int] = List(1, 0, 0)
Inherited from
Functor
@noop
def ifM[B](fa: Task[Boolean])(ifTrue: => Task[B], ifFalse: => Task[B]): Task[B]

if lifted into monad.

if lifted into monad.

Inherited from
FlatMap
override def imap[A, B](fa: Task[A])(f: A => B)(g: B => A): Task[B]
Definition Classes
Functor -> Invariant
Inherited from
Functor
@noop
def iterateForeverM[A, B](a: A)(f: A => Task[A]): Task[B]

iterateForeverM is almost exclusively useful for effect types. For instance, A may be some state, we may take the current state, run some effect to get a new state and repeat.

iterateForeverM is almost exclusively useful for effect types. For instance, A may be some state, we may take the current state, run some effect to get a new state and repeat.

Inherited from
FlatMap
def iterateUntil[A](f: Task[A])(p: A => Boolean): Task[A]

Execute an action repeatedly until its result satisfies the given predicate and return that result, discarding all others.

Execute an action repeatedly until its result satisfies the given predicate and return that result, discarding all others.

Inherited from
Monad
def iterateUntilM[A](init: A)(f: A => Task[A])(p: A => Boolean): Task[A]

Apply a monadic function iteratively until its result satisfies the given predicate and return that result.

Apply a monadic function iteratively until its result satisfies the given predicate and return that result.

Inherited from
Monad
def iterateWhile[A](f: Task[A])(p: A => Boolean): Task[A]

Execute an action repeatedly until its result fails to satisfy the given predicate and return that result, discarding all others.

Execute an action repeatedly until its result fails to satisfy the given predicate and return that result, discarding all others.

Inherited from
Monad
def iterateWhileM[A](init: A)(f: A => Task[A])(p: A => Boolean): Task[A]

Apply a monadic function iteratively until its result fails to satisfy the given predicate and return that result.

Apply a monadic function iteratively until its result fails to satisfy the given predicate and return that result.

Inherited from
Monad
def leftFunctor[X]: Functor[[_] =>> IO[_$4, X]]
Inherited from
Bifunctor
def leftMap[A, B, C](fab: IO[A, B])(f: A => C): IO[C, B]

apply a function to the "left" functor

apply a function to the "left" functor

Inherited from
Bifunctor
def leftWiden[A, B, AA >: A](fab: IO[A, B]): IO[AA, B]

Widens A into a supertype AA. Example:

Widens A into a supertype AA. Example:

scala> import cats.implicits._
scala> sealed trait Foo
scala> case object Bar extends Foo
scala> val x1: Either[Bar.type, Int] = Either.left(Bar)
scala> val x2: Either[Foo, Int] = x1.leftWiden
Inherited from
Bifunctor
def lift[A, B](f: A => B): Task[A] => Task[B]

Lift a function f to operate on Functors

Lift a function f to operate on Functors

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption

scala> val o = Option(42)
scala> Functor[Option].lift((x: Int) => x + 10)(o)
res0: Option[Int] = Some(52)
Inherited from
Functor
override def liftIO[A](ioa: IO[A]): Task[A]

Inherited from LiftIO, defines a conversion from IO in terms of the Concurrent type class.

Inherited from LiftIO, defines a conversion from IO in terms of the Concurrent type class.

N.B. expressing this conversion in terms of Concurrent and its capabilities means that the resulting F is cancelable in case the source IO is.

To access this implementation as a standalone function, you can use Concurrent.liftIO (on the object companion).

Definition Classes
Concurrent -> Async -> LiftIO
Inherited from
Concurrent
override def map[A, B](fa: IO[Throwable, A])(f: A => B): IO[Throwable, B]
Definition Classes
CatsBaseForTask -> Monad -> Applicative -> Functor
Inherited from
CatsBaseForTask
override def map2[A, B, Z](fa: IO[Throwable, A], fb: IO[Throwable, B])(f: (A, B) => Z): IO[Throwable, Z]
Definition Classes
CatsBaseForTask -> FlatMap -> Apply
Inherited from
CatsBaseForTask
def map2Eval[A, B, Z](fa: Task[A], fb: Eval[Task[B]])(f: (A, B) => Z): Eval[Task[Z]]

Similar to map2 but uses Eval to allow for laziness in the F[B] argument. This can allow for "short-circuiting" of computations.

Similar to map2 but uses Eval to allow for laziness in the F[B] argument. This can allow for "short-circuiting" of computations.

NOTE: the default implementation of map2Eval does not short-circuit computations. For data structures that can benefit from laziness, Apply instances should override this method.

In the following example, x.map2(bomb)(_ + _) would result in an error, but map2Eval "short-circuits" the computation. x is None and thus the result of bomb doesn't even need to be evaluated in order to determine that the result of map2Eval should be None.

scala> import cats.{Eval, Later}
scala> import cats.implicits._
scala> val bomb: Eval[Option[Int]] = Later(sys.error("boom"))
scala> val x: Option[Int] = None
scala> x.map2Eval(bomb)(_ + _).value
res0: Option[Int] = None
Inherited from
Apply
def mproduct[A, B](fa: Task[A])(f: A => Task[B]): Task[(A, B)]

Pair A with the result of function application.

Pair A with the result of function application.

Example:

scala> import cats.implicits._
scala> List("12", "34", "56").mproduct(_.toList)
res0: List[(String, Char)] = List((12,1), (12,2), (34,3), (34,4), (56,5), (56,6))
Inherited from
FlatMap
def never[A]: Task[A]

Returns a non-terminating F[_], that never completes with a result, being equivalent to async(_ => ())

Returns a non-terminating F[_], that never completes with a result, being equivalent to async(_ => ())

Inherited from
Async
def onCancel[A](fa: Task[A])(finalizer: Task[Unit]): Task[A]

Executes the given finalizer when the source is canceled.

Executes the given finalizer when the source is canceled.

The typical use case for this function arises in the implementation of concurrent abstractions, which generally consist of operations that perform asynchronous waiting after concurrently modifying some state: in case the user asks for cancelation, we want to interrupt the waiting operation, and restore the state to its previous value.

waitingOp.onCancel(restoreState)

A direct use of bracket is not a good fit for this case as it would make the waiting action uncancelable.

NOTE: This function handles interruption only, you need to take care of the success and error case elsewhere in your code

See also

guaranteeCase for the version that can discriminate between termination conditions

bracket for the more general operation

Concurrent.continual when you have a use case similar to the cancel/restore example above, but require access to the result of F[A]

Inherited from
Bracket
def onError[A](fa: Task[A])(pf: PartialFunction[Throwable, Task[Unit]]): Task[A]

Execute a callback on certain errors, then rethrow them. Any non matching error is rethrown as well.

Execute a callback on certain errors, then rethrow them. Any non matching error is rethrown as well.

In the following example, only one of the errors is logged, but they are both rethrown, to be possibly handled by another layer of the program:

scala> import cats._, data._, implicits._

scala> case class Err(msg: String)

scala> type F[A] = EitherT[State[String, *], Err, A]

scala> val action: PartialFunction[Err, F[Unit]] = {
    |   case Err("one") => EitherT.liftF(State.set("one"))
    | }

scala> val prog1: F[Int] = (Err("one")).raiseError[F, Int]
scala> val prog2: F[Int] = (Err("two")).raiseError[F, Int]

scala> prog1.onError(action).value.run("").value

res0: (String, Either[Err,Int]) = (one,Left(Err(one)))

scala> prog2.onError(action).value.run("").value
res1: (String, Either[Err,Int]) = ("",Left(Err(two)))
Inherited from
ApplicativeError
def point[A](a: A): Task[A]

point lifts any value into a Monoidal Functor.

point lifts any value into a Monoidal Functor.

Example:

scala> import cats.implicits._

scala> InvariantMonoidal[Option].point(10)
res0: Option[Int] = Some(10)
Inherited from
InvariantMonoidal
override def product[A, B](fa: IO[Throwable, A], fb: IO[Throwable, B]): IO[Throwable, (A, B)]
Definition Classes
CatsBaseForTask -> FlatMap -> Apply -> Semigroupal
Inherited from
CatsBaseForTask
override def productL[A, B](fa: Task[A])(fb: Task[B]): Task[A]
Definition Classes
FlatMap -> Apply
Inherited from
FlatMap
def productLEval[A, B](fa: Task[A])(fb: Eval[Task[B]]): Task[A]

Sequentially compose two actions, discarding any value produced by the second. This variant of productL also lets you define the evaluation strategy of the second action. For instance you can evaluate it only ''after'' the first action has finished:

Sequentially compose two actions, discarding any value produced by the second. This variant of productL also lets you define the evaluation strategy of the second action. For instance you can evaluate it only ''after'' the first action has finished:

scala> import cats.Eval
scala> import cats.implicits._
scala> var count = 0
scala> val fa: Option[Int] = Some(3)
scala> def fb: Option[Unit] = Some(count += 1)
scala> fa.productLEval(Eval.later(fb))
res0: Option[Int] = Some(3)
scala> assert(count == 1)
scala> none[Int].productLEval(Eval.later(fb))
res1: Option[Int] = None
scala> assert(count == 1)
Inherited from
FlatMap
override def productR[A, B](fa: Task[A])(fb: Task[B]): Task[B]
Definition Classes
FlatMap -> Apply
Inherited from
FlatMap
def productREval[A, B](fa: Task[A])(fb: Eval[Task[B]]): Task[B]

Sequentially compose two actions, discarding any value produced by the first. This variant of productR also lets you define the evaluation strategy of the second action. For instance you can evaluate it only ''after'' the first action has finished:

Sequentially compose two actions, discarding any value produced by the first. This variant of productR also lets you define the evaluation strategy of the second action. For instance you can evaluate it only ''after'' the first action has finished:

scala> import cats.Eval
scala> import cats.implicits._
scala> val fa: Option[Int] = Some(3)
scala> def fb: Option[String] = Some("foo")
scala> fa.productREval(Eval.later(fb))
res0: Option[String] = Some(foo)
Inherited from
FlatMap
override def pure[A](a: A): UIO[A]
Definition Classes
CatsBaseForTask -> Applicative
Inherited from
CatsBaseForTask
override def race[A, B](fa: Task[A], fb: Task[B]): Task[Either[A, B]]
Definition Classes
CatsConcurrentForTask -> Concurrent
Inherited from
CatsConcurrentForTask
override def racePair[A, B](fa: Task[A], fb: Task[B]): Task[Either[(A, Fiber[Throwable, B]), (Fiber[Throwable, A], B)]]
Definition Classes
CatsConcurrentForTask -> Concurrent
Inherited from
CatsConcurrentForTask
override def raiseError[A](e: Throwable): IO[Throwable, A]
Definition Classes
CatsBaseForTask -> ApplicativeError
Inherited from
CatsBaseForTask
override def recover[A](fa: IO[Throwable, A])(pf: PartialFunction[Throwable, A]): IO[Throwable, A]
Definition Classes
CatsBaseForTask -> ApplicativeError
Inherited from
CatsBaseForTask
override def recoverWith[A](fa: IO[Throwable, A])(pf: PartialFunction[Throwable, IO[Throwable, A]]): IO[Throwable, A]
Definition Classes
CatsBaseForTask -> ApplicativeError
Inherited from
CatsBaseForTask
def redeem[A, B](fa: Task[A])(recover: Throwable => B, f: A => B): Task[B]

Returns a new value that transforms the result of the source, given the recover or map functions, which get executed depending on whether the result is successful or if it ends in error.

Returns a new value that transforms the result of the source, given the recover or map functions, which get executed depending on whether the result is successful or if it ends in error.

This is an optimization on usage of attempt and map, this equivalence being available:

 fa.redeem(fe, fs) <-> fa.attempt.map(_.fold(fe, fs))

Usage of redeem subsumes handleError because:

 fa.redeem(fe, id) <-> fa.handleError(fe)

Implementations are free to override it in order to optimize error recovery.

Value Params
fa

is the source whose result is going to get transformed

recover

is the function that gets called to recover the source in case of error

See also

MonadError.redeemWith, attempt and handleError

Inherited from
ApplicativeError
def redeemWith[A, B](fa: Task[A])(recover: Throwable => Task[B], bind: A => Task[B]): Task[B]

Returns a new value that transforms the result of the source, given the recover or bind functions, which get executed depending on whether the result is successful or if it ends in error.

Returns a new value that transforms the result of the source, given the recover or bind functions, which get executed depending on whether the result is successful or if it ends in error.

This is an optimization on usage of attempt and flatMap, this equivalence being available:

 fa.redeemWith(fe, fs) <-> fa.attempt.flatMap(_.fold(fe, fs))

Usage of redeemWith subsumes handleErrorWith because:

 fa.redeemWith(fe, F.pure) <-> fa.handleErrorWith(fe)

Usage of redeemWith also subsumes flatMap because:

 fa.redeemWith(F.raiseError, fs) <-> fa.flatMap(fs)

Implementations are free to override it in order to optimize error recovery.

Value Params
bind

is the function that gets to transform the source in case of success

fa

is the source whose result is going to get transformed

recover

is the function that gets called to recover the source in case of error

See also

redeem, attempt and handleErrorWith

Inherited from
MonadError
def replicateA[A](n: Int, fa: Task[A]): Task[List[A]]

Given fa and n, apply fa n times to construct an F[List[A]] value.

Given fa and n, apply fa n times to construct an F[List[A]] value.

Example:

scala> import cats.data.State

scala> type Counter[A] = State[Int, A]
scala> val getAndIncrement: Counter[Int] = State { i => (i + 1, i) }
scala> val getAndIncrement5: Counter[List[Int]] =
    | Applicative[Counter].replicateA(5, getAndIncrement)
scala> getAndIncrement5.run(0).value
res0: (Int, List[Int]) = (5,List(0, 1, 2, 3, 4))
Inherited from
Applicative
def rethrow[A, EE <: Throwable](fa: Task[Either[EE, A]]): Task[A]

Inverse of attempt

Inverse of attempt

Example:

scala> import cats.implicits._
scala> import scala.util.{Try, Success}

scala> val a: Try[Either[Throwable, Int]] = Success(Left(new java.lang.Exception))
scala> a.rethrow
res0: scala.util.Try[Int] = Failure(java.lang.Exception)

scala> val b: Try[Either[Throwable, Int]] = Success(Right(1))
scala> b.rethrow
res1: scala.util.Try[Int] = Success(1)
Inherited from
MonadError
def rightFunctor[X]: Functor[[_] =>> IO[X, _$3]]
Inherited from
Bifunctor
override def start[A](fa: Task[A]): Task[Fiber[Throwable, A]]
Definition Classes
CatsConcurrentForTask -> Concurrent
Inherited from
CatsConcurrentForTask
def sum[A, B](fa: IO[Throwable, A], fb: IO[Throwable, B])(F: Functor[[_] =>> IO[Throwable, _$3]]): IO[Throwable, Either[A, B]]

Combines F[A] and F[B] into a F[Either[A,B]]].

Combines F[A] and F[B] into a F[Either[A,B]]].

Example:

scala> import cats.SemigroupK
scala> import cats.data.NonEmptyList
scala> SemigroupK[NonEmptyList].sum(NonEmptyList.one("abc"), NonEmptyList.one(2))
res0: NonEmptyList[Either[String,Int]] = NonEmptyList(Left(abc), Right(2))
Inherited from
SemigroupK
override def suspend[A](fa: => Task[A]): Task[A]
Definition Classes
Inherited from
CatsAsyncForTask
override def tailRecM[A, B](a: A)(f: A => IO[Throwable, Either[A, B]]): IO[Throwable, B]
Definition Classes
CatsBaseForTask -> FlatMap
Inherited from
CatsBaseForTask
def tuple2[A, B](f1: Task[A], f2: Task[B]): Task[(A, B)]
Inherited from
ApplyArityFunctions
def tupleLeft[A, B](fa: Task[A], b: B): Task[(B, A)]

Tuples the A value in F[A] with the supplied B value, with the B value on the left.

Tuples the A value in F[A] with the supplied B value, with the B value on the left.

Example:

scala> import scala.collection.immutable.Queue
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForQueue

scala> Functor[Queue].tupleLeft(Queue("hello", "world"), 42)
res0: scala.collection.immutable.Queue[(Int, String)] = Queue((42,hello), (42,world))
Inherited from
Functor
def tupleRight[A, B](fa: Task[A], b: B): Task[(A, B)]

Tuples the A value in F[A] with the supplied B value, with the B value on the right.

Tuples the A value in F[A] with the supplied B value, with the B value on the right.

Example:

scala> import scala.collection.immutable.Queue
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForQueue

scala> Functor[Queue].tupleRight(Queue("hello", "world"), 42)
res0: scala.collection.immutable.Queue[(String, Int)] = Queue((hello,42), (world,42))
Inherited from
Functor
override def uncancelable[A](fa: Task[A]): Task[A]
Definition Classes
Inherited from
CatsConcurrentForTask
def unlessA[A](cond: Boolean)(f: => Task[A]): Task[Unit]

Returns the given argument (mapped to Unit) if cond is false, otherwise, unit lifted into F.

Returns the given argument (mapped to Unit) if cond is false, otherwise, unit lifted into F.

Example:

scala> import cats.implicits._

scala> Applicative[List].unlessA(true)(List(1, 2, 3))
res0: List[Unit] = List(())

scala> Applicative[List].unlessA(false)(List(1, 2, 3))
res1: List[Unit] = List((), (), ())

scala> Applicative[List].unlessA(true)(List.empty[Int])
res2: List[Unit] = List(())

scala> Applicative[List].unlessA(false)(List.empty[Int])
res3: List[Unit] = List()
Inherited from
Applicative
@noop
def untilDefinedM[A](foa: Task[Option[A]]): Task[A]

This repeats an F until we get defined values. This can be useful for polling type operations on State (or RNG) Monads, or in effect monads.

This repeats an F until we get defined values. This can be useful for polling type operations on State (or RNG) Monads, or in effect monads.

Inherited from
FlatMap
def untilM[G[_], A](f: Task[A])(cond: => Task[Boolean])(G: Alternative[G]): Task[G[A]]

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Collects results into an arbitrary Alternative value, such as a Vector. This implementation uses append on each evaluation result, so avoid data structures with non-constant append performance, e.g. List.

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Collects results into an arbitrary Alternative value, such as a Vector. This implementation uses append on each evaluation result, so avoid data structures with non-constant append performance, e.g. List.

Inherited from
Monad
def untilM_[A](f: Task[A])(cond: => Task[Boolean]): Task[Unit]

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Discards results.

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Discards results.

Inherited from
Monad
@noop
def unzip[A, B](fab: Task[(A, B)]): (Task[A], Task[B])

Un-zips an F[(A, B)] consisting of element pairs or Tuple2 into two separate F's tupled.

Un-zips an F[(A, B)] consisting of element pairs or Tuple2 into two separate F's tupled.

NOTE: Check for effect duplication, possibly memoize before

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList

scala> Functor[List].unzip(List((1,2), (3, 4)))
res0: (List[Int], List[Int]) = (List(1, 3),List(2, 4))
Inherited from
Functor
def void[A](fa: Task[A]): Task[Unit]

Empty the fa of the values, preserving the structure

Empty the fa of the values, preserving the structure

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList

scala> Functor[List].void(List(1,2,3))
res0: List[Unit] = List((), (), ())
Inherited from
Functor
def whenA[A](cond: Boolean)(f: => Task[A]): Task[Unit]

Returns the given argument (mapped to Unit) if cond is true, otherwise, unit lifted into F.

Returns the given argument (mapped to Unit) if cond is true, otherwise, unit lifted into F.

Example:

scala> import cats.implicits._

scala> Applicative[List].whenA(true)(List(1, 2, 3))
res0: List[Unit] = List((), (), ())

scala> Applicative[List].whenA(false)(List(1, 2, 3))
res1: List[Unit] = List(())

scala> Applicative[List].whenA(true)(List.empty[Int])
res2: List[Unit] = List()

scala> Applicative[List].whenA(false)(List.empty[Int])
res3: List[Unit] = List(())
Inherited from
Applicative
@noop
def whileM[G[_], A](p: Task[Boolean])(body: => Task[A])(G: Alternative[G]): Task[G[A]]

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Collects the results into an arbitrary Alternative value, such as a Vector. This implementation uses append on each evaluation result, so avoid data structures with non-constant append performance, e.g. List.

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Collects the results into an arbitrary Alternative value, such as a Vector. This implementation uses append on each evaluation result, so avoid data structures with non-constant append performance, e.g. List.

Inherited from
Monad
@noop
def whileM_[A](p: Task[Boolean])(body: => Task[A]): Task[Unit]

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Discards results.

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Discards results.

Inherited from
Monad
def widen[A, B >: A](fa: Task[A]): Task[B]

Lifts natural subtyping covariance of covariant Functors.

Lifts natural subtyping covariance of covariant Functors.

NOTE: In certain (perhaps contrived) situations that rely on universal equality this can result in a ClassCastException, because it is implemented as a type cast. It could be implemented as map(identity), but according to the functor laws, that should be equal to fa, and a type cast is often much more performant. See this example of widen creating a ClassCastException.

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption

scala> val s = Some(42)
scala> Functor[Option].widen(s)
res0: Option[Int] = Some(42)
Inherited from
Functor

Inherited fields

override val unit: UIO[Unit]
Inherited from
CatsBaseForTask