org.apache.commons.math.analysis.polynomials
Class PolynomialFunctionLagrangeForm

java.lang.Object
  extended by org.apache.commons.math.analysis.polynomials.PolynomialFunctionLagrangeForm
All Implemented Interfaces:
UnivariateRealFunction

public class PolynomialFunctionLagrangeForm
extends Object
implements UnivariateRealFunction

Implements the representation of a real polynomial function in Lagrange Form. For reference, see Introduction to Numerical Analysis, ISBN 038795452X, chapter 2.

The approximated function should be smooth enough for Lagrange polynomial to work well. Otherwise, consider using splines instead.

Since:
1.2
Version:
$Revision: 1073498 $ $Date: 2011-02-22 21:57:26 +0100 (mar. 22 févr. 2011) $

Constructor Summary
PolynomialFunctionLagrangeForm(double[] x, double[] y)
          Construct a Lagrange polynomial with the given abscissas and function values.
 
Method Summary
protected  void computeCoefficients()
          Calculate the coefficients of Lagrange polynomial from the interpolation data.
 int degree()
          Returns the degree of the polynomial.
static double evaluate(double[] x, double[] y, double z)
          Evaluate the Lagrange polynomial using Neville's Algorithm.
 double[] getCoefficients()
          Returns a copy of the coefficients array.
 double[] getInterpolatingPoints()
          Returns a copy of the interpolating points array.
 double[] getInterpolatingValues()
          Returns a copy of the interpolating values array.
 double value(double z)
          Compute the value for the function.
static void verifyInterpolationArray(double[] x, double[] y)
          Verifies that the interpolation arrays are valid.
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

PolynomialFunctionLagrangeForm

public PolynomialFunctionLagrangeForm(double[] x,
                                      double[] y)
                               throws IllegalArgumentException
Construct a Lagrange polynomial with the given abscissas and function values. The order of interpolating points are not important.

The constructor makes copy of the input arrays and assigns them.

Parameters:
x - interpolating points
y - function values at interpolating points
Throws:
IllegalArgumentException - if input arrays are not valid
Method Detail

value

public double value(double z)
             throws FunctionEvaluationException
Compute the value for the function.

Specified by:
value in interface UnivariateRealFunction
Parameters:
z - the point for which the function value should be computed
Returns:
the value
Throws:
FunctionEvaluationException - if the function evaluation fails

degree

public int degree()
Returns the degree of the polynomial.

Returns:
the degree of the polynomial

getInterpolatingPoints

public double[] getInterpolatingPoints()
Returns a copy of the interpolating points array.

Changes made to the returned copy will not affect the polynomial.

Returns:
a fresh copy of the interpolating points array

getInterpolatingValues

public double[] getInterpolatingValues()
Returns a copy of the interpolating values array.

Changes made to the returned copy will not affect the polynomial.

Returns:
a fresh copy of the interpolating values array

getCoefficients

public double[] getCoefficients()
Returns a copy of the coefficients array.

Changes made to the returned copy will not affect the polynomial.

Note that coefficients computation can be ill-conditioned. Use with caution and only when it is necessary.

Returns:
a fresh copy of the coefficients array

evaluate

public static double evaluate(double[] x,
                              double[] y,
                              double z)
                       throws DuplicateSampleAbscissaException,
                              IllegalArgumentException
Evaluate the Lagrange polynomial using Neville's Algorithm. It takes O(N^2) time.

This function is made public static so that users can call it directly without instantiating PolynomialFunctionLagrangeForm object.

Parameters:
x - the interpolating points array
y - the interpolating values array
z - the point at which the function value is to be computed
Returns:
the function value
Throws:
DuplicateSampleAbscissaException - if the sample has duplicate abscissas
IllegalArgumentException - if inputs are not valid

computeCoefficients

protected void computeCoefficients()
                            throws ArithmeticException
Calculate the coefficients of Lagrange polynomial from the interpolation data. It takes O(N^2) time.

Note this computation can be ill-conditioned. Use with caution and only when it is necessary.

Throws:
ArithmeticException - if any abscissas coincide

verifyInterpolationArray

public static void verifyInterpolationArray(double[] x,
                                            double[] y)
                                     throws IllegalArgumentException
Verifies that the interpolation arrays are valid.

The arrays features checked by this method are that both arrays have the same length and this length is at least 2.

The interpolating points must be distinct. However it is not verified here, it is checked in evaluate() and computeCoefficients().

Parameters:
x - the interpolating points array
y - the interpolating values array
Throws:
IllegalArgumentException - if not valid
See Also:
evaluate(double[], double[], double), computeCoefficients()


Copyright © 2003-2011 The Apache Software Foundation. All Rights Reserved.