|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectorg.apache.commons.math.analysis.polynomials.PolynomialFunctionLagrangeForm
public class PolynomialFunctionLagrangeForm
Implements the representation of a real polynomial function in Lagrange Form. For reference, see Introduction to Numerical Analysis, ISBN 038795452X, chapter 2.
The approximated function should be smooth enough for Lagrange polynomial to work well. Otherwise, consider using splines instead.
Constructor Summary | |
---|---|
PolynomialFunctionLagrangeForm(double[] x,
double[] y)
Construct a Lagrange polynomial with the given abscissas and function values. |
Method Summary | |
---|---|
protected void |
computeCoefficients()
Calculate the coefficients of Lagrange polynomial from the interpolation data. |
int |
degree()
Returns the degree of the polynomial. |
static double |
evaluate(double[] x,
double[] y,
double z)
Evaluate the Lagrange polynomial using Neville's Algorithm. |
double[] |
getCoefficients()
Returns a copy of the coefficients array. |
double[] |
getInterpolatingPoints()
Returns a copy of the interpolating points array. |
double[] |
getInterpolatingValues()
Returns a copy of the interpolating values array. |
double |
value(double z)
Compute the value for the function. |
static void |
verifyInterpolationArray(double[] x,
double[] y)
Verifies that the interpolation arrays are valid. |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Constructor Detail |
---|
public PolynomialFunctionLagrangeForm(double[] x, double[] y) throws IllegalArgumentException
The constructor makes copy of the input arrays and assigns them.
x
- interpolating pointsy
- function values at interpolating points
IllegalArgumentException
- if input arrays are not validMethod Detail |
---|
public double value(double z) throws FunctionEvaluationException
value
in interface UnivariateRealFunction
z
- the point for which the function value should be computed
FunctionEvaluationException
- if the function evaluation failspublic int degree()
public double[] getInterpolatingPoints()
Changes made to the returned copy will not affect the polynomial.
public double[] getInterpolatingValues()
Changes made to the returned copy will not affect the polynomial.
public double[] getCoefficients()
Changes made to the returned copy will not affect the polynomial.
Note that coefficients computation can be ill-conditioned. Use with caution and only when it is necessary.
public static double evaluate(double[] x, double[] y, double z) throws DuplicateSampleAbscissaException, IllegalArgumentException
This function is made public static so that users can call it directly without instantiating PolynomialFunctionLagrangeForm object.
x
- the interpolating points arrayy
- the interpolating values arrayz
- the point at which the function value is to be computed
DuplicateSampleAbscissaException
- if the sample has duplicate abscissas
IllegalArgumentException
- if inputs are not validprotected void computeCoefficients() throws ArithmeticException
Note this computation can be ill-conditioned. Use with caution and only when it is necessary.
ArithmeticException
- if any abscissas coincidepublic static void verifyInterpolationArray(double[] x, double[] y) throws IllegalArgumentException
The arrays features checked by this method are that both arrays have the same length and this length is at least 2.
The interpolating points must be distinct. However it is not verified here, it is checked in evaluate() and computeCoefficients().
x
- the interpolating points arrayy
- the interpolating values array
IllegalArgumentException
- if not validevaluate(double[], double[], double)
,
computeCoefficients()
|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |