org.apache.commons.math.distribution
Class PoissonDistributionImpl

java.lang.Object
  extended by org.apache.commons.math.distribution.AbstractDistribution
      extended by org.apache.commons.math.distribution.AbstractIntegerDistribution
          extended by org.apache.commons.math.distribution.PoissonDistributionImpl
All Implemented Interfaces:
Serializable, DiscreteDistribution, Distribution, IntegerDistribution, PoissonDistribution

public class PoissonDistributionImpl
extends AbstractIntegerDistribution
implements PoissonDistribution, Serializable

Implementation for the PoissonDistribution.

Version:
$Revision: 1054524 $ $Date: 2011-01-03 05:59:18 +0100 (lun. 03 janv. 2011) $
See Also:
Serialized Form

Field Summary
static double DEFAULT_EPSILON
          Default convergence criterion.
static int DEFAULT_MAX_ITERATIONS
          Default maximum number of iterations for cumulative probability calculations.
 
Fields inherited from class org.apache.commons.math.distribution.AbstractIntegerDistribution
randomData
 
Constructor Summary
PoissonDistributionImpl(double p)
          Create a new Poisson distribution with the given the mean.
PoissonDistributionImpl(double p, double epsilon)
          Create a new Poisson distribution with the given mean and convergence criterion.
PoissonDistributionImpl(double p, double epsilon, int maxIterations)
          Create a new Poisson distribution with the given mean, convergence criterion and maximum number of iterations.
PoissonDistributionImpl(double p, int maxIterations)
          Create a new Poisson distribution with the given mean and maximum number of iterations.
PoissonDistributionImpl(double p, NormalDistribution z)
          Deprecated. as of 2.1 (to avoid possibly inconsistent state, the "NormalDistribution" will be instantiated internally)
 
Method Summary
 double cumulativeProbability(int x)
          The probability distribution function P(X <= x) for a Poisson distribution.
protected  int getDomainLowerBound(double p)
          Access the domain value lower bound, based on p, used to bracket a CDF root.
protected  int getDomainUpperBound(double p)
          Access the domain value upper bound, based on p, used to bracket a CDF root.
 double getMean()
          Get the Poisson mean for the distribution.
 double getNumericalVariance()
          Returns the variance of the distribution.
 int getSupportLowerBound()
          Returns the lower bound of the support for the distribution.
 int getSupportUpperBound()
          Returns the upper bound of the support for the distribution.
 double normalApproximateProbability(int x)
          Calculates the Poisson distribution function using a normal approximation.
 double probability(int x)
          The probability mass function P(X = x) for a Poisson distribution.
 int sample()
          Generates a random value sampled from this distribution.
 void setMean(double p)
          Deprecated. as of 2.1 (class will become immutable in 3.0)
 void setNormal(NormalDistribution value)
          Deprecated. as of 2.1 (class will become immutable in 3.0)
 
Methods inherited from class org.apache.commons.math.distribution.AbstractIntegerDistribution
cumulativeProbability, cumulativeProbability, cumulativeProbability, inverseCumulativeProbability, isSupportLowerBoundInclusive, isSupportUpperBoundInclusive, probability, reseedRandomGenerator, sample
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 
Methods inherited from interface org.apache.commons.math.distribution.IntegerDistribution
cumulativeProbability, inverseCumulativeProbability
 
Methods inherited from interface org.apache.commons.math.distribution.DiscreteDistribution
probability
 
Methods inherited from interface org.apache.commons.math.distribution.Distribution
cumulativeProbability, cumulativeProbability
 

Field Detail

DEFAULT_MAX_ITERATIONS

public static final int DEFAULT_MAX_ITERATIONS
Default maximum number of iterations for cumulative probability calculations.

Since:
2.1
See Also:
Constant Field Values

DEFAULT_EPSILON

public static final double DEFAULT_EPSILON
Default convergence criterion.

Since:
2.1
See Also:
Constant Field Values
Constructor Detail

PoissonDistributionImpl

public PoissonDistributionImpl(double p)
Create a new Poisson distribution with the given the mean. The mean value must be positive; otherwise an IllegalArgument is thrown.

Parameters:
p - the Poisson mean
Throws:
IllegalArgumentException - if p ≤ 0

PoissonDistributionImpl

public PoissonDistributionImpl(double p,
                               double epsilon,
                               int maxIterations)
Create a new Poisson distribution with the given mean, convergence criterion and maximum number of iterations.

Parameters:
p - the Poisson mean
epsilon - the convergence criteria for cumulative probabilites
maxIterations - the maximum number of iterations for cumulative probabilites
Since:
2.1

PoissonDistributionImpl

public PoissonDistributionImpl(double p,
                               double epsilon)
Create a new Poisson distribution with the given mean and convergence criterion.

Parameters:
p - the Poisson mean
epsilon - the convergence criteria for cumulative probabilites
Since:
2.1

PoissonDistributionImpl

public PoissonDistributionImpl(double p,
                               int maxIterations)
Create a new Poisson distribution with the given mean and maximum number of iterations.

Parameters:
p - the Poisson mean
maxIterations - the maximum number of iterations for cumulative probabilites
Since:
2.1

PoissonDistributionImpl

@Deprecated
public PoissonDistributionImpl(double p,
                                          NormalDistribution z)
Deprecated. as of 2.1 (to avoid possibly inconsistent state, the "NormalDistribution" will be instantiated internally)

Create a new Poisson distribution with the given the mean. The mean value must be positive; otherwise an IllegalArgument is thrown.

Parameters:
p - the Poisson mean
z - a normal distribution used to compute normal approximations.
Throws:
IllegalArgumentException - if p ≤ 0
Since:
1.2
Method Detail

getMean

public double getMean()
Get the Poisson mean for the distribution.

Specified by:
getMean in interface PoissonDistribution
Returns:
the Poisson mean for the distribution.

setMean

@Deprecated
public void setMean(double p)
Deprecated. as of 2.1 (class will become immutable in 3.0)

Set the Poisson mean for the distribution. The mean value must be positive; otherwise an IllegalArgument is thrown.

Specified by:
setMean in interface PoissonDistribution
Parameters:
p - the Poisson mean value
Throws:
IllegalArgumentException - if p ≤ 0

probability

public double probability(int x)
The probability mass function P(X = x) for a Poisson distribution.

Specified by:
probability in interface IntegerDistribution
Parameters:
x - the value at which the probability density function is evaluated.
Returns:
the value of the probability mass function at x

cumulativeProbability

public double cumulativeProbability(int x)
                             throws MathException
The probability distribution function P(X <= x) for a Poisson distribution.

Specified by:
cumulativeProbability in interface IntegerDistribution
Specified by:
cumulativeProbability in class AbstractIntegerDistribution
Parameters:
x - the value at which the PDF is evaluated.
Returns:
Poisson distribution function evaluated at x
Throws:
MathException - if the cumulative probability can not be computed due to convergence or other numerical errors.

normalApproximateProbability

public double normalApproximateProbability(int x)
                                    throws MathException
Calculates the Poisson distribution function using a normal approximation. The N(mean, sqrt(mean)) distribution is used to approximate the Poisson distribution.

The computation uses "half-correction" -- evaluating the normal distribution function at x + 0.5

Specified by:
normalApproximateProbability in interface PoissonDistribution
Parameters:
x - the upper bound, inclusive
Returns:
the distribution function value calculated using a normal approximation
Throws:
MathException - if an error occurs computing the normal approximation

sample

public int sample()
           throws MathException
Generates a random value sampled from this distribution.

Algorithm Description:

Overrides:
sample in class AbstractIntegerDistribution
Returns:
random value
Throws:
MathException - if an error occurs generating the random value
Since:
2.2

getDomainLowerBound

protected int getDomainLowerBound(double p)
Access the domain value lower bound, based on p, used to bracket a CDF root. This method is used by AbstractIntegerDistribution.inverseCumulativeProbability(double) to find critical values.

Specified by:
getDomainLowerBound in class AbstractIntegerDistribution
Parameters:
p - the desired probability for the critical value
Returns:
domain lower bound

getDomainUpperBound

protected int getDomainUpperBound(double p)
Access the domain value upper bound, based on p, used to bracket a CDF root. This method is used by AbstractIntegerDistribution.inverseCumulativeProbability(double) to find critical values.

Specified by:
getDomainUpperBound in class AbstractIntegerDistribution
Parameters:
p - the desired probability for the critical value
Returns:
domain upper bound

setNormal

@Deprecated
public void setNormal(NormalDistribution value)
Deprecated. as of 2.1 (class will become immutable in 3.0)

Modify the normal distribution used to compute normal approximations. The caller is responsible for insuring the normal distribution has the proper parameter settings.

Parameters:
value - the new distribution
Since:
1.2

getSupportLowerBound

public int getSupportLowerBound()
Returns the lower bound of the support for the distribution. The lower bound of the support is always 0 no matter the mean parameter.

Returns:
lower bound of the support (always 0)
Since:
2.2

getSupportUpperBound

public int getSupportUpperBound()
Returns the upper bound of the support for the distribution. The upper bound of the support is positive infinity, regardless of the parameter values. There is no integer infinity, so this method returns Integer.MAX_VALUE and AbstractIntegerDistribution.isSupportUpperBoundInclusive() returns true.

Returns:
upper bound of the support (always Integer.MAX_VALUE for positive infinity)
Since:
2.2

getNumericalVariance

public double getNumericalVariance()
Returns the variance of the distribution. For mean parameter p, the variance is p

Returns:
the variance
Since:
2.2


Copyright © 2003-2011 The Apache Software Foundation. All Rights Reserved.