org.apache.commons.math.distribution
Class TDistributionImpl

java.lang.Object
  extended by org.apache.commons.math.distribution.AbstractDistribution
      extended by org.apache.commons.math.distribution.AbstractContinuousDistribution
          extended by org.apache.commons.math.distribution.TDistributionImpl
All Implemented Interfaces:
Serializable, ContinuousDistribution, Distribution, TDistribution

public class TDistributionImpl
extends AbstractContinuousDistribution
implements TDistribution, Serializable

Default implementation of TDistribution.

Version:
$Revision: 1054524 $ $Date: 2011-01-03 05:59:18 +0100 (lun. 03 janv. 2011) $
See Also:
Serialized Form

Field Summary
static double DEFAULT_INVERSE_ABSOLUTE_ACCURACY
          Default inverse cumulative probability accuracy
 
Fields inherited from class org.apache.commons.math.distribution.AbstractContinuousDistribution
randomData
 
Constructor Summary
TDistributionImpl(double degreesOfFreedom)
          Create a t distribution using the given degrees of freedom.
TDistributionImpl(double degreesOfFreedom, double inverseCumAccuracy)
          Create a t distribution using the given degrees of freedom and the specified inverse cumulative probability absolute accuracy.
 
Method Summary
 double cumulativeProbability(double x)
          For this distribution, X, this method returns P(X < x).
 double density(double x)
          Returns the probability density for a particular point.
 double getDegreesOfFreedom()
          Access the degrees of freedom.
protected  double getDomainLowerBound(double p)
          Access the domain value lower bound, based on p, used to bracket a CDF root.
protected  double getDomainUpperBound(double p)
          Access the domain value upper bound, based on p, used to bracket a CDF root.
protected  double getInitialDomain(double p)
          Access the initial domain value, based on p, used to bracket a CDF root.
 double getNumericalMean()
          Returns the mean.
 double getNumericalVariance()
          Returns the variance.
protected  double getSolverAbsoluteAccuracy()
          Return the absolute accuracy setting of the solver used to estimate inverse cumulative probabilities.
 double getSupportLowerBound()
          Returns the lower bound of the support for the distribution.
 double getSupportUpperBound()
          Returns the upper bound of the support for the distribution.
 double inverseCumulativeProbability(double p)
          For this distribution, X, this method returns the critical point x, such that P(X < x) = p.
 void setDegreesOfFreedom(double degreesOfFreedom)
          Deprecated. as of 2.1 (class will become immutable in 3.0)
 
Methods inherited from class org.apache.commons.math.distribution.AbstractContinuousDistribution
reseedRandomGenerator, sample, sample
 
Methods inherited from class org.apache.commons.math.distribution.AbstractDistribution
cumulativeProbability
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 
Methods inherited from interface org.apache.commons.math.distribution.Distribution
cumulativeProbability
 

Field Detail

DEFAULT_INVERSE_ABSOLUTE_ACCURACY

public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY
Default inverse cumulative probability accuracy

Since:
2.1
See Also:
Constant Field Values
Constructor Detail

TDistributionImpl

public TDistributionImpl(double degreesOfFreedom,
                         double inverseCumAccuracy)
Create a t distribution using the given degrees of freedom and the specified inverse cumulative probability absolute accuracy.

Parameters:
degreesOfFreedom - the degrees of freedom.
inverseCumAccuracy - the maximum absolute error in inverse cumulative probability estimates (defaults to DEFAULT_INVERSE_ABSOLUTE_ACCURACY)
Since:
2.1

TDistributionImpl

public TDistributionImpl(double degreesOfFreedom)
Create a t distribution using the given degrees of freedom.

Parameters:
degreesOfFreedom - the degrees of freedom.
Method Detail

setDegreesOfFreedom

@Deprecated
public void setDegreesOfFreedom(double degreesOfFreedom)
Deprecated. as of 2.1 (class will become immutable in 3.0)

Modify the degrees of freedom.

Specified by:
setDegreesOfFreedom in interface TDistribution
Parameters:
degreesOfFreedom - the new degrees of freedom.

getDegreesOfFreedom

public double getDegreesOfFreedom()
Access the degrees of freedom.

Specified by:
getDegreesOfFreedom in interface TDistribution
Returns:
the degrees of freedom.

density

public double density(double x)
Returns the probability density for a particular point.

Overrides:
density in class AbstractContinuousDistribution
Parameters:
x - The point at which the density should be computed.
Returns:
The pdf at point x.
Since:
2.1

cumulativeProbability

public double cumulativeProbability(double x)
                             throws MathException
For this distribution, X, this method returns P(X < x).

Specified by:
cumulativeProbability in interface Distribution
Parameters:
x - the value at which the CDF is evaluated.
Returns:
CDF evaluated at x.
Throws:
MathException - if the cumulative probability can not be computed due to convergence or other numerical errors.

inverseCumulativeProbability

public double inverseCumulativeProbability(double p)
                                    throws MathException
For this distribution, X, this method returns the critical point x, such that P(X < x) = p.

Returns Double.NEGATIVE_INFINITY for p=0 and Double.POSITIVE_INFINITY for p=1.

Specified by:
inverseCumulativeProbability in interface ContinuousDistribution
Overrides:
inverseCumulativeProbability in class AbstractContinuousDistribution
Parameters:
p - the desired probability
Returns:
x, such that P(X < x) = p
Throws:
MathException - if the inverse cumulative probability can not be computed due to convergence or other numerical errors.
IllegalArgumentException - if p is not a valid probability.

getDomainLowerBound

protected double getDomainLowerBound(double p)
Access the domain value lower bound, based on p, used to bracket a CDF root. This method is used by inverseCumulativeProbability(double) to find critical values.

Specified by:
getDomainLowerBound in class AbstractContinuousDistribution
Parameters:
p - the desired probability for the critical value
Returns:
domain value lower bound, i.e. P(X < lower bound) < p

getDomainUpperBound

protected double getDomainUpperBound(double p)
Access the domain value upper bound, based on p, used to bracket a CDF root. This method is used by inverseCumulativeProbability(double) to find critical values.

Specified by:
getDomainUpperBound in class AbstractContinuousDistribution
Parameters:
p - the desired probability for the critical value
Returns:
domain value upper bound, i.e. P(X < upper bound) > p

getInitialDomain

protected double getInitialDomain(double p)
Access the initial domain value, based on p, used to bracket a CDF root. This method is used by inverseCumulativeProbability(double) to find critical values.

Specified by:
getInitialDomain in class AbstractContinuousDistribution
Parameters:
p - the desired probability for the critical value
Returns:
initial domain value

getSolverAbsoluteAccuracy

protected double getSolverAbsoluteAccuracy()
Return the absolute accuracy setting of the solver used to estimate inverse cumulative probabilities.

Overrides:
getSolverAbsoluteAccuracy in class AbstractContinuousDistribution
Returns:
the solver absolute accuracy
Since:
2.1

getSupportLowerBound

public double getSupportLowerBound()
Returns the lower bound of the support for the distribution. The lower bound of the support is always negative infinity no matter the parameters.

Returns:
lower bound of the support (always Double.NEGATIVE_INFINITY)
Since:
2.2

getSupportUpperBound

public double getSupportUpperBound()
Returns the upper bound of the support for the distribution. The upper bound of the support is always positive infinity no matter the parameters.

Returns:
upper bound of the support (always Double.POSITIVE_INFINITY)
Since:
2.2

getNumericalMean

public double getNumericalMean()
Returns the mean. For degrees of freedom parameter df, the mean is

Returns:
the mean
Since:
2.2

getNumericalVariance

public double getNumericalVariance()
Returns the variance. For degrees of freedom parameter df, the variance is

Returns:
the variance
Since:
2.2


Copyright © 2003-2011 The Apache Software Foundation. All Rights Reserved.