public abstract class AbstractScalarDifferentiableOptimizer extends BaseAbstractMultivariateOptimizer<DifferentiableMultivariateFunction> implements DifferentiableMultivariateOptimizer
evaluations
Modifier | Constructor and Description |
---|---|
protected |
AbstractScalarDifferentiableOptimizer()
Simple constructor with default settings.
|
protected |
AbstractScalarDifferentiableOptimizer(ConvergenceChecker<PointValuePair> checker) |
Modifier and Type | Method and Description |
---|---|
protected double[] |
computeObjectiveGradient(double[] evaluationPoint)
Compute the gradient vector.
|
PointValuePair |
optimize(int maxEval,
DifferentiableMultivariateFunction f,
GoalType goalType,
double[] startPoint)
Optimize an objective function.
|
computeObjectiveValue, doOptimize, getConvergenceChecker, getEvaluations, getGoalType, getMaxEvaluations, getStartPoint
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
getConvergenceChecker, getEvaluations, getMaxEvaluations
protected AbstractScalarDifferentiableOptimizer()
SimpleValueChecker
.protected AbstractScalarDifferentiableOptimizer(ConvergenceChecker<PointValuePair> checker)
checker
- Convergence checker.protected double[] computeObjectiveGradient(double[] evaluationPoint)
evaluationPoint
- Point at which the gradient must be evaluated.TooManyEvaluationsException
- if the allowed number of evaluations is exceeded.public PointValuePair optimize(int maxEval, DifferentiableMultivariateFunction f, GoalType goalType, double[] startPoint)
optimize
in interface BaseMultivariateOptimizer<DifferentiableMultivariateFunction>
optimize
in class BaseAbstractMultivariateOptimizer<DifferentiableMultivariateFunction>
maxEval
- Maximum number of function evaluations.f
- Objective function.goalType
- Type of optimization goal: either
GoalType.MAXIMIZE
or GoalType.MINIMIZE
.startPoint
- Start point for optimization.Copyright © 2003-2012 The Apache Software Foundation. All Rights Reserved.