class SparkSession extends Serializable with Closeable with Logging
The entry point to programming Spark with the Dataset and DataFrame API.
In environments that this has been created upfront (e.g. REPL, notebooks), use the builder to get an existing session:
SparkSession.builder().getOrCreate()
The builder can also be used to create a new session:
SparkSession.builder .master("local") .appName("Word Count") .config("spark.some.config.option", "some-value") .getOrCreate()
- Alphabetic
- By Inheritance
- SparkSession
- Logging
- Closeable
- AutoCloseable
- Serializable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def addArtifact(uri: URI): Unit
Add a single artifact to the client session.
Add a single artifact to the client session.
Currently only local files with extensions .jar and .class are supported.
- Annotations
- @Experimental()
- Since
3.4.0
- def addArtifact(path: String): Unit
Add a single artifact to the client session.
Add a single artifact to the client session.
Currently only local files with extensions .jar and .class are supported.
- Annotations
- @Experimental()
- Since
3.4.0
- def addArtifacts(uri: URI*): Unit
Add one or more artifacts to the session.
Add one or more artifacts to the session.
Currently only local files with extensions .jar and .class are supported.
- Annotations
- @Experimental() @varargs()
- Since
3.4.0
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @native()
- def close(): Unit
Close the SparkSession.
Close the SparkSession. This closes the connection, and the allocator. The latter will throw an exception if there are still open SparkResults.
- Definition Classes
- SparkSession → Closeable → AutoCloseable
- Since
3.4.0
- val conf: RuntimeConfig
Runtime configuration interface for Spark.
Runtime configuration interface for Spark.
This is the interface through which the user can get and set all Spark configurations that are relevant to Spark SQL. When getting the value of a config, his defaults to the value set in server, if any.
- Since
3.4.0
- def createDataFrame(data: List[_], beanClass: Class[_]): DataFrame
Applies a schema to a List of Java Beans.
Applies a schema to a List of Java Beans.
WARNING: Since there is no guaranteed ordering for fields in a Java Bean, SELECT * queries will return the columns in an undefined order.
- Since
3.4.0
- def createDataFrame(rows: List[Row], schema: StructType): DataFrame
:: DeveloperApi :: Creates a
DataFrame
from ajava.util.List
containing Rows using the given schema.:: DeveloperApi :: Creates a
DataFrame
from ajava.util.List
containing Rows using the given schema. It is important to make sure that the structure of every Row of the provided List matches the provided schema. Otherwise, there will be runtime exception.- Since
3.4.0
- def createDataFrame[A <: Product](data: Seq[A])(implicit arg0: scala.reflect.api.JavaUniverse.TypeTag[A]): DataFrame
Creates a
DataFrame
from a local Seq of Product.Creates a
DataFrame
from a local Seq of Product.- Since
3.4.0
- def createDataset[T](data: List[T])(implicit arg0: Encoder[T]): Dataset[T]
Creates a Dataset from a
java.util.List
of a given type.Creates a Dataset from a
java.util.List
of a given type. This method requires an encoder (to convert a JVM object of typeT
to and from the internal Spark SQL representation) that is generally created automatically through implicits from aSparkSession
, or can be created explicitly by calling static methods on Encoders.Java Example
List<String> data = Arrays.asList("hello", "world"); Dataset<String> ds = spark.createDataset(data, Encoders.STRING());
- Since
3.4.0
- def createDataset[T](data: Seq[T])(implicit arg0: Encoder[T]): Dataset[T]
Creates a Dataset from a local Seq of data of a given type.
Creates a Dataset from a local Seq of data of a given type. This method requires an encoder (to convert a JVM object of type
T
to and from the internal Spark SQL representation) that is generally created automatically through implicits from aSparkSession
, or can be created explicitly by calling static methods on Encoders.Example
import spark.implicits._ case class Person(name: String, age: Long) val data = Seq(Person("Michael", 29), Person("Andy", 30), Person("Justin", 19)) val ds = spark.createDataset(data) ds.show() // +-------+---+ // | name|age| // +-------+---+ // |Michael| 29| // | Andy| 30| // | Justin| 19| // +-------+---+
- Since
3.4.0
- val emptyDataFrame: DataFrame
Returns a
DataFrame
with no rows or columns.Returns a
DataFrame
with no rows or columns.- Since
3.4.0
- def emptyDataset[T](implicit arg0: Encoder[T]): Dataset[T]
Creates a new Dataset of type T containing zero elements.
Creates a new Dataset of type T containing zero elements.
- Since
3.4.0
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def execute(extension: Any): Unit
- Annotations
- @DeveloperApi()
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable])
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- def initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- def isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- def log: Logger
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logName: String
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def newDataFrame(extension: Any): DataFrame
- Annotations
- @DeveloperApi()
- def newDataset[T](extension: Any, encoder: AgnosticEncoder[T]): Dataset[T]
- Annotations
- @DeveloperApi()
- def newSession(): SparkSession
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- def range(start: Long, end: Long, step: Long, numPartitions: Int): Dataset[Long]
Creates a Dataset with a single
LongType
column namedid
, containing elements in a range fromstart
toend
(exclusive) with a step value, with partition number specified.Creates a Dataset with a single
LongType
column namedid
, containing elements in a range fromstart
toend
(exclusive) with a step value, with partition number specified.- Since
3.4.0
- def range(start: Long, end: Long, step: Long): Dataset[Long]
Creates a Dataset with a single
LongType
column namedid
, containing elements in a range fromstart
toend
(exclusive) with a step value.Creates a Dataset with a single
LongType
column namedid
, containing elements in a range fromstart
toend
(exclusive) with a step value.- Since
3.4.0
- def range(start: Long, end: Long): Dataset[Long]
Creates a Dataset with a single
LongType
column namedid
, containing elements in a range fromstart
toend
(exclusive) with step value 1.Creates a Dataset with a single
LongType
column namedid
, containing elements in a range fromstart
toend
(exclusive) with step value 1.- Since
3.4.0
- def range(end: Long): Dataset[Long]
Creates a Dataset with a single
LongType
column namedid
, containing elements in a range from 0 toend
(exclusive) with step value 1.Creates a Dataset with a single
LongType
column namedid
, containing elements in a range from 0 toend
(exclusive) with step value 1.- Since
3.4.0
- def read: DataFrameReader
Returns a DataFrameReader that can be used to read non-streaming data in as a
DataFrame
.Returns a DataFrameReader that can be used to read non-streaming data in as a
DataFrame
.sparkSession.read.parquet("/path/to/file.parquet") sparkSession.read.schema(schema).json("/path/to/file.json")
- Since
3.4.0
- def sql(query: String): DataFrame
Executes a SQL query using Spark, returning the result as a
DataFrame
.Executes a SQL query using Spark, returning the result as a
DataFrame
. This API eagerly runs DDL/DML commands, but not for SELECT queries.- Since
3.4.0
- def sql(sqlText: String, args: Map[String, Any]): DataFrame
Executes a SQL query substituting named parameters by the given arguments, returning the result as a
DataFrame
.Executes a SQL query substituting named parameters by the given arguments, returning the result as a
DataFrame
. This API eagerly runs DDL/DML commands, but not for SELECT queries.- sqlText
A SQL statement with named parameters to execute.
- args
A map of parameter names to Java/Scala objects that can be converted to SQL literal expressions. See Supported Data Types for supported value types in Scala/Java. For example, map keys: "rank", "name", "birthdate"; map values: 1, "Steven", LocalDate.of(2023, 4, 2). Map value can be also a
Column
of literal expression, in that case it is taken as is.
- Annotations
- @Experimental()
- Since
3.4.0
- def sql(sqlText: String, args: Map[String, Any]): DataFrame
Executes a SQL query substituting named parameters by the given arguments, returning the result as a
DataFrame
.Executes a SQL query substituting named parameters by the given arguments, returning the result as a
DataFrame
. This API eagerly runs DDL/DML commands, but not for SELECT queries.- sqlText
A SQL statement with named parameters to execute.
- args
A map of parameter names to Java/Scala objects that can be converted to SQL literal expressions. See Supported Data Types for supported value types in Scala/Java. For example, map keys: "rank", "name", "birthdate"; map values: 1, "Steven", LocalDate.of(2023, 4, 2). Map value can be also a
Column
of literal expression, in that case it is taken as is.
- Annotations
- @Experimental()
- Since
3.4.0
- def stop(): Unit
Synonym for
close()
.Synonym for
close()
.- Since
3.4.0
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def table(tableName: String): DataFrame
Returns the specified table/view as a
DataFrame
.Returns the specified table/view as a
DataFrame
. If it's a table, it must support batch reading and the returned DataFrame is the batch scan query plan of this table. If it's a view, the returned DataFrame is simply the query plan of the view, which can either be a batch or streaming query plan.- tableName
is either a qualified or unqualified name that designates a table or view. If a database is specified, it identifies the table/view from the database. Otherwise, it first attempts to find a temporary view with the given name and then match the table/view from the current database. Note that, the global temporary view database is also valid here.
- Since
3.4.0
- def time[T](f: => T): T
Executes some code block and prints to stdout the time taken to execute the block.
Executes some code block and prints to stdout the time taken to execute the block. This is available in Scala only and is used primarily for interactive testing and debugging.
- Since
3.4.0
- def toString(): String
- Definition Classes
- AnyRef → Any
- lazy val version: String
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- object implicits extends SQLImplicits
(Scala-specific) Implicit methods available in Scala for converting common names and Symbols into Columns, and for converting common Scala objects into
DataFrame
s.(Scala-specific) Implicit methods available in Scala for converting common names and Symbols into Columns, and for converting common Scala objects into
DataFrame
s.val sparkSession = SparkSession.builder.getOrCreate() import sparkSession.implicits._
- Since
3.4.0