Packages

c

org.apache.spark.ml.stat.distribution

MultivariateGaussian

class MultivariateGaussian extends Serializable

This class provides basic functionality for a Multivariate Gaussian (Normal) Distribution. In the event that the covariance matrix is singular, the density will be computed in a reduced dimensional subspace under which the distribution is supported. (see here)

Annotations
@Since("2.0.0") @DeveloperApi()
Linear Supertypes
Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. MultivariateGaussian
  2. Serializable
  3. AnyRef
  4. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. Protected

Instance Constructors

  1. new MultivariateGaussian(mean: Vector, cov: Matrix)

    mean

    The mean vector of the distribution

    cov

    The covariance matrix of the distribution

    Annotations
    @Since("2.0.0")

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##: Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.CloneNotSupportedException]) @native()
  6. val cov: Matrix
    Annotations
    @Since("2.0.0")
  7. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  8. def equals(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef → Any
  9. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.Throwable])
  10. final def getClass(): Class[_ <: AnyRef]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  11. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  12. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  13. def logpdf(x: Vector): Double

    Returns the log-density of this multivariate Gaussian at given point, x

    Returns the log-density of this multivariate Gaussian at given point, x

    Annotations
    @Since("2.0.0")
  14. val mean: Vector
    Annotations
    @Since("2.0.0")
  15. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  16. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  17. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  18. def pdf(x: Vector): Double

    Returns density of this multivariate Gaussian at given point, x

    Returns density of this multivariate Gaussian at given point, x

    Annotations
    @Since("2.0.0")
  19. final def synchronized[T0](arg0: => T0): T0
    Definition Classes
    AnyRef
  20. def toString(): String
    Definition Classes
    AnyRef → Any
  21. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])
  22. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])
  23. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException]) @native()

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped