Packages

object StatFunctions extends Logging

Linear Supertypes
Logging, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. StatFunctions
  2. Logging
  3. AnyRef
  4. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. Protected

Type Members

  1. implicit class LogStringContext extends AnyRef
    Definition Classes
    Logging

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##: Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def calculateCov(df: classic.DataFrame, cols: Seq[String]): Double

    Calculate the covariance of two numerical columns of a DataFrame.

    Calculate the covariance of two numerical columns of a DataFrame.

    df

    The DataFrame

    cols

    the column names

    returns

    the covariance of the two columns.

  6. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
  7. def crossTabulate(df: classic.DataFrame, col1: String, col2: String): classic.DataFrame

    Generate a table of frequencies for the elements of two columns.

  8. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  9. def equals(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef → Any
  10. final def getClass(): Class[_ <: AnyRef]
    Definition Classes
    AnyRef → Any
    Annotations
    @IntrinsicCandidate() @native()
  11. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @IntrinsicCandidate() @native()
  12. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  13. def initializeLogIfNecessary(isInterpreter: Boolean): Unit
    Attributes
    protected
    Definition Classes
    Logging
  14. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  15. def isTraceEnabled(): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  16. def log: Logger
    Attributes
    protected
    Definition Classes
    Logging
  17. def logDebug(msg: => String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  18. def logDebug(entry: LogEntry, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  19. def logDebug(entry: LogEntry): Unit
    Attributes
    protected
    Definition Classes
    Logging
  20. def logDebug(msg: => String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  21. def logError(msg: => String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  22. def logError(entry: LogEntry, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  23. def logError(entry: LogEntry): Unit
    Attributes
    protected
    Definition Classes
    Logging
  24. def logError(msg: => String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  25. def logInfo(msg: => String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  26. def logInfo(entry: LogEntry, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  27. def logInfo(entry: LogEntry): Unit
    Attributes
    protected
    Definition Classes
    Logging
  28. def logInfo(msg: => String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  29. def logName: String
    Attributes
    protected
    Definition Classes
    Logging
  30. def logTrace(msg: => String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  31. def logTrace(entry: LogEntry, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  32. def logTrace(entry: LogEntry): Unit
    Attributes
    protected
    Definition Classes
    Logging
  33. def logTrace(msg: => String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  34. def logWarning(msg: => String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  35. def logWarning(entry: LogEntry, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  36. def logWarning(entry: LogEntry): Unit
    Attributes
    protected
    Definition Classes
    Logging
  37. def logWarning(msg: => String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  38. def multipleApproxQuantiles(df: classic.DataFrame, cols: Seq[String], probabilities: Seq[Double], relativeError: Double): Seq[Seq[Double]]

    Calculates the approximate quantiles of multiple numerical columns of a DataFrame in one pass.

    Calculates the approximate quantiles of multiple numerical columns of a DataFrame in one pass.

    The result of this algorithm has the following deterministic bound: If the DataFrame has N elements and if we request the quantile at probability p up to error err, then the algorithm will return a sample x from the DataFrame so that the *exact* rank of x is close to (p * N). More precisely,

    floor((p - err) * N) <= rank(x) <= ceil((p + err) * N).

    This method implements a variation of the Greenwald-Khanna algorithm (with some speed optimizations). The algorithm was first present in Space-efficient Online Computation of Quantile Summaries by Greenwald and Khanna.

    df

    the dataframe

    cols

    numerical columns of the dataframe

    probabilities

    a list of quantile probabilities Each number must belong to [0, 1]. For example 0 is the minimum, 0.5 is the median, 1 is the maximum.

    relativeError

    The relative target precision to achieve (greater than or equal 0). If set to zero, the exact quantiles are computed, which could be very expensive. Note that values greater than 1 are accepted but give the same result as 1.

    returns

    for each column, returns the requested approximations

    Note

    null and NaN values will be ignored in numerical columns before calculation. For a column only containing null or NaN values, an empty array is returned.

  39. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  40. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @IntrinsicCandidate() @native()
  41. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @IntrinsicCandidate() @native()
  42. def pearsonCorrelation(df: classic.DataFrame, cols: Seq[String]): Double

    Calculate the Pearson Correlation Coefficient for the given columns

  43. def summary(ds: classic.Dataset[_], statistics: Seq[String]): classic.DataFrame

    Calculate selected summary statistics for a dataset

  44. final def synchronized[T0](arg0: => T0): T0
    Definition Classes
    AnyRef
  45. def toString(): String
    Definition Classes
    AnyRef → Any
  46. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])
  47. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException]) @native()
  48. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])
  49. def withLogContext(context: Map[String, String])(body: => Unit): Unit
    Attributes
    protected
    Definition Classes
    Logging

Deprecated Value Members

  1. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.Throwable]) @Deprecated
    Deprecated

    (Since version 9)

Inherited from Logging

Inherited from AnyRef

Inherited from Any

Ungrouped